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Abstract 

 This thesis develops and presents a secure Git implementation, Git Virtual Vault 

(GV2), for users of Git to work on sensitive projects with repositories located in unsecure 

distributed environments, such as in cloud computing. This scenario is common within 

the Department of Defense, as much work is of a sensitive nature. In order to provide 

security to Git, additional functionality is added for confidentiality and integrity 

protection. This thesis examines existing Git encryption implementations and baselines 

their performance compared to unencrypted Git. Real-world Git repositories are 

examined to characterize typical Git usage and determine if the existing Git encryption 

implementations are capable of efficient performance with regards to typical Git usage. 

This research shows that the existing Git encryption implementations do not provide 

efficient performance. This research develops an improved secure Git implementation, 

GV2, with transparent authenticated encryption. The fundamental contribution of this 

research is developing GV2 to perform Git garbage collection on plaintext data before 

encrypting the data. The result is a secure Git implementation that is transparent to the 

user with only a minor performance penalty, compared to unencrypted Git.    
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GIT AS AN ENCRYPTED DISTRIBUTED VERSION CONTROL SYSTEM 

 

I.  Introduction 

Research Objectives 

The goal of this thesis is to find or develop a viable secure Git implementation 

that can be used while working with sensitive data to protect that data. Current 

mainstream implementations of Git do not provide cryptographic protection of source 

code [1-3]. To achieve the goal of this thesis, the research objective is to demonstrate a 

modification to Git that allows for use as a fully functional and secure distributed version 

control system that can be used for sensitive projects. This research defines secure as 

controlled read-only access and integrity protection. Controlled read-only access means 

ensuring that if anyone without the proper credentials accesses the repository, they are 

not able to read or decipher any bits of information contained therein. Integrity protection 

means that if the encrypted repository data is maliciously altered, anyone with the proper 

key will know the data has been compromised when they try to decrypt it. Fully 

functional means that the set of all Git commands work identically on the secure Git 

repository as they do a traditional unencrypted Git repository.   

 This is new research that has interest from DoD and other organizations who want 

to leverage software development using a third party cloud service provider, while 

retaining confidentiality of the source code. In the future, many traditional applications 

will be modified to support this same type of secure functionality. Added security often 

poses trade-offs, usually in terms of ease of use and performance, when dealing with 

applications. This research investigates these performance trade-offs to determine if using 
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secure Git is a viable alternative to the archaic zip and then encrypt method that is 

currently available to provide cryptographic protection to Git repositories.  

Background 

In software development, distributed version control systems are becoming 

increasingly popular as software projects are often developed in physically distributed 

work environments [4]. Git is one such distributed version control system and has been 

rapidly gaining users in recent years [5, 6]. In order to fully understand why Git was 

developed, how it has become so widely used, and, most importantly, why securing Git is 

necessary, a brief overview of computer and networking history is necessary.   

Microelectronics and computers have experienced rapid growth in the past half 

century. Moore’s Law has accurately predicted the growth of the number of devices per 

silicon die, which has set the pace of innovation in one of the most dynamic of the 

world’s industries [7]. As microelectronic technology continues to evolve, allowing for 

more transistors on a smaller die, a wide range of innovative applications is plausible. 

Computers are one major benefactor of this technological revolution [8]. Taking 

advantage of the smaller and more powerful microprocessors, computers have evolved 

from expensive, military developed systems, to large mainframes used by Fortune 500 

companies, to the advent of the personal computer.   

In addition to the advancements yielding increases in power and decreases in size 

of computers, technology dealing with communication between computers, and other 

portable electronic devices, have made significant steps forward in terms of functionality 

and usability in the same timeframe [9]. Inter-device communication has evolved from 



 

3 

expensive, slow, proprietary protocols to the advent and growth of the internet, using 

widely accepted TCP/IP and UDP protocols.  The adoption of protocol by users has 

enabled transferring information through interconnected networks across the world. This 

development has led to a dependence on the internet to increase personal and workspace 

productivity, as organizations no longer need to work in the same vicinity, but can have 

access to and share resources across a country, or even continents, with minimal time 

delay.  

Bandwidth increases allow for more data to be sent at faster speeds [10]. This 

allows for real-time applications to be executed over the internet, such as video 

teleconferencing, video gaming, and collaborative office or document work. This has led 

to large growth in the area of cloud computing in the recent decade. The National 

Institute of Standards and Technology (NIST) went through 15 drafts to develop a paper 

to define cloud computing [11]. This thesis uses the definition that cloud computing is, 

“Internet-based computing in which large groups of remote servers are networked so as 

to allow sharing of data-processing tasks, centralized data storage, and online access to 

computer services or resources.” [12]   

Using cloud computing services allows organizations or individuals to bypass the 

expensive costs and overhead of setting up and managing infrastructure [13]. They also 

have options to scale their cloud computing resources over time and rent only what they 

need from a cloud computing service provider, such as Amazon Web Services (AWS), 

Google AppEngine, or Microsoft Windows Azure, to name a few [14]. The elastic nature 

of scaling computing resources with cloud computing allows companies to save money 
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but contemplating cloud computing brings security concerns relating to access control or 

data security, as the company no longer has full control over their resources and security 

setup [15]. Additionally, some companies may question the service level agreements that 

the cloud service providers stand by, specifically in the areas of reliability and availability 

[16].     

With the movement of computing from centralized to decentralized systems, file 

systems have also been created and evolved in order to keep up with these changes [17-

22]. File systems now employ the options of storing data in many different formats, in a 

variety of locations, with many different protocols for security, access, and backup 

options. Since modern file systems have become so complex with multiple workers 

accessing the same files, version control systems are often used in order to keep track of 

changes, merge work together, and also to revert back to previous work when mistakes 

are made, or new changes are unwanted. These version control systems are especially 

popular with software developers, as it enables them to keep historical versions of source 

code and project files for access at a later time.  

Both distributed and centralized version control systems exist [1]. Centralized 

version control systems are characterized by a single source repository from which all 

members check source code files in or out (with proper permissions to do so). Distributed 

version control systems are decentralized, allowing developers to check-out or clone 

existing repositories with full rights on that instance of check-out (if the access control 

allows). Every developer has their own repository and can choose whether they merge 
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with other repositories or not. Usually, there is an agreed upon ‘central’ repository 

location that is kept up to date and controlled by a select few.   

One popular distributed version control system is Git [5]. Git is open source and 

handles revisions for repositories of varying sizes. In 2010, Subversion, a centralized 

version control system, accounted for more than 60% of the market for version-control 

systems, while Git only accounted for 2.7% of the market share. Redmonk analyst 

Stephen O’Grady performed a study of software version control systems used in 2013 

and found that Git had increased its market share to 28%. Additionally, as of October 

2014, there are over 250,000 Git projects, making up 37% of the repositories tracked by 

Open HUB, an online open source directory [6]. In 2013, GitHub, an online storage site 

devoted to hosting Git repositories in a centralized and easy to access location, touted 

over 6,000,000 projects [23]. This includes well-known projects such as Linux or 

Wordpress and also projects developed by large organizations, such as Google and 

Facebook. A main reason for the increase in usage of Git is the growing desire for 

software developers to transition from centralized to decentralized version control 

systems. Git’s usage of a distributed version control system allows for increased parallel 

work, reducing inefficiencies. Figure 1 gives a visual depiction of the market share split 

for current version control systems.  
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Figure 1. Percentage share for projects tracked by Open HUB [6] 

 

Distributed version control systems are becoming increasingly popular as 

software projects are often developed in physically distributed work environments as 

global software engineering is growing [4]. Software version control systems are an add-

on to the development environment. Desired traits are to be lightweight, efficient, and 

easy to use. The popular ones have the option to store just the changes between files, 

called deltas, or compress the separate versions of files, depending on how the system 

works. This ensures that the repository does not grow in proportion to the sum of all of 

the sizes of all of the different versions of the files. This works well for unencrypted 

repositories, which is the environment in which the majority of distributed version 
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control systems are used, but does not work well on encrypted repositories, as the popular 

version control systems were not created to handle encrypted data.  

Cloud computing offers highly efficient and scalable hardware and software 

resources, allowing enterprises to save money on computing expenses [13]. These 

efficiencies come with added security risk, as the cloud computing environment is 

accessible through the internet [24, 25]. If an enterprise works with sensitive data and 

wants to utilize the cloud, they must take a look into security. This is an area of little 

concern to most distributed version control systems used today.  

Problem Statement 

Git does not encrypt source code files, which potentially limits its use in sensitive 

projects - for example, many Department of Defense (DoD) projects. Sensitive projects 

require that repository contents are restricted to a select access group. While unencrypted 

version control works with sensitive projects if every computer is in a secure area, it is 

not possible to leverage non-secure storage mediums outside of the secure area. With the 

rapid adaptation of cloud computing today, if a repository can be securely stored in a 

cloud computing environment, it provides efficiencies that eliminate the need to create a 

separate secure network and host the data. The entire repository can be encrypted and 

transferred, however, this requires a large amount of overhead for small file changes as 

the entire contents of the repository must be encrypted and transferred, not just the 

specific files that have changed.  

As an example, consider several developers working on the Linux kernel in a 

distributed environment. These developers are using a Git repository hosted by a cloud 
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service provider, and securing Git by zipping the repository and encrypting the zip file.  

The Linux kernel is roughly 140 MB in size. In order to work on the repository in a 

secure manner, the steps are as follows: 

1. A developer downloads the zip file from the cloud storage server (140 MB of 

bandwidth usage). 

2. The developer decrypts and then uncompresses the zip file. 

3. The developer checks out the unencrypted repository on his or her local 

machine. 

4. The developer changes one character in one file. 

5. The developer then adds the file and commits the change to the repository.  

6. The developer zips the repository and then encrypts the zip file.  

7. The developer then uploads the zip file to the cloud (140 MB of bandwidth 

usage). 

This example of a one character change in a file requires 280 MB of bandwidth 

usage, plus an extra 140 MB of storage in the cloud, as both zip files must be stored on 

the cloud provider’s storage services as different versions of the Linux kernel. If the Git 

server is used directly, then the user is able to save on bandwidth usage and also only add 

a fraction of the additional storage to the cloud. Aside from the wasted bandwidth, time, 

and monetary costs associated with large file uploads and data storage, the seamless 

functionality of Git is lost if the files have to be zipped and then transferred. A traditional 

Git repository provides detailed interaction whether it resides on a user’s personal 

computer or an accessible server. When zipped, the repository cannot be easily examined 
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or mirrored to users. They have to download the zip file and then unzip before the data 

can be handled as a Git repository. This altogether takes away from the purpose of an 

efficient and easy to use distributed version control system. While the features of Git still 

exist once the decryption of the zip file and unzip of the repository is complete, Git 

becomes burdensome when used in this manner.    

Organization 

 This thesis is intended to have an audience of computer programmers, especially 

those who are familiar with Git. It is relevant, however, for software engineers, computer 

engineers, and the information technology community as a whole, as it presents many 

ideas and concepts that are prevalent in today’s rapidly growing cloud computing 

environment, mainly in regards to security and performance.  

 The remaining chapters of this thesis present background information relevant to 

this project and needed in order to fully comprehend all of the research ideas that this 

thesis encompasses. Chapter II reviews the basic concepts of cryptography and security 

principles before describing the specific security desired and why it is required for this 

research.  The chapter then provides a more detailed look at the origins of version control 

systems and the functionality and internal structure of Git. Internal Git structure is 

necessary to understand when discussing the implementation of encryption within Git 

and recognizing performance trade-offs. Chapter II then discusses how version control 

systems are used today. Specifically, software engineering papers researching typical 

version control uses are discussed. Referenced papers provide background information 

for characterizing the usage of Git, which is discussed in a later section. Lastly, the 
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chapter discusses existing Git encryption implementations and the pros and cons of each 

from the multiple perspectives of security, functionality, and performance of the 

application. 

 Chapter III describes the methodology used in this research to demonstrate a 

usable secure Git implementation. This chapter consists of three phases:  

1. Secure Git Baseline Phase: test existing Git encryption implementations to 

baseline their performance against unencrypted Git.  

2. Git Characterization Phase: mine real-world Git repositories in order to provide 

realistic emulation of Git repositories over time to provide realistic testing and 

demonstrate that the proposed secure Git implementation works with typical Git 

repositories.    

3. Secure Git Improvement Phase: develop and test a secure Git implementation that 

improves upon the previously tested versions from Phase One.  

 Chapter III focuses on the methodology for accomplishing each phase. This 

includes describing the process for each phase as well as describing the testing 

environment, to include the variables of the test, the test setup, and expected results.   

    Chapters IV presents and analyzes the results of each of the phases described in 

the previous chapters in detail. This chapter analyzes the tests and provides technical 

analysis of the results through a series of experimental statistics and graphs, in order to 

show the whole picture of what each test means to this research.  

 Lastly, Chapter V concludes this research. This final chapter summarizes this 

research, how it benefits the software engineering, computer engineering, and 
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information technology community, and suggests future research opportunities relating to 

this topic. 
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II. Literature Review 

Chapter Overview 

 The Literature Review chapter provides necessary background information to 

better understand the research accomplished in this thesis. Related research is also 

discussed and explained in reference to contribution of the research presented. This 

chapter begins with a review of the basic concepts of cryptography and security 

principles. It then goes on to describe different cryptography protocols which are needed 

to attain the specific security requirements desired for a secure Git implementation upon 

which the goals of this research hinge. The chapter then provides a more detailed look at 

the origins of version control, the functionality, and internal structure of Git.  

 Internal Git structure is conceptually vital to understand when discussing the 

implementation of encryption within Git. Specifically, recognizing performance trade-

offs when operating in a secure manner rather than unencrypted are reviewed. Next, the 

chapter discusses the need for a secure Git implementation and research into this area. 

This includes theoretical research as well as examining existing Git encryption 

implementations and the pros and cons of each in terms of security, functionality, and 

performance. Lastly, Chapter II discusses software engineering research characterizing 

version control systems and specific techniques for mining Git data. This is necessary to 

understand Git usage in order to properly gauge how the secure Git implementation 

chosen will perform in realistic software development environments.  
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Cryptography 

 Cryptography is the art of keeping messages secure, or hidden, from anyone who 

is not supposed to have access. Cryptography dates back to ancient Egypt in 2000 B.C. 

[26]. The well-known Caesar Cipher was used in ancient Rome. In this protocol, the 

letters of the alphabet are all shifted to encrypt a message, and shifted again to their 

original message in the decryption process. There are four popular goals often used in 

cryptography [27]:  

1. Confidentiality: The ciphertext of a message gives no information about the 

plaintext of that message.  

2. Integrity: The receiver of the message can verify that the message has not 

been modified in transit and is indeed authentic and not a fake message that an 

intruder has substituted.   

3. Authentication: The receiver of the message can ascertain its origin, 

preventing an intruder from masquerading and faking identity. 

4. Nonrepudiation: A sender cannot deny that they sent a message if they truly 

sent it.   

 There are many different protocols in cryptography and the results of using them 

differ in terms of security and performance. Increasing security tends to increase 

overhead and decrease performance. Some protocols are tested and assumed secure until 

a vulnerability is discovered. Oftentimes, the protocol itself is secure, but the 

implementation in code is not, thus it is always advisable to use vetted cryptography 

libraries when implementing cryptography in a program [28].  
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 Two of the main types of ciphers are stream and block [26]. Stream ciphers 

encrypt bits individually by adding (logical XOR in practice) a key stream bit to each 

plaintext bit. Block ciphers segment the plaintext into equal sized blocks and encrypt 

these blocks of bits in via a specific algorithm. The two prevalent block encryption 

algorithms are Data Encryption Standard (DES) and Advanced Encryption Standard 

(AES). AES is faster than DES and provides options for higher bit levels of security [28].  

 A simple block encryption cipher is Electronic Code Book (ECB) [26, 27]. This 

encryption scheme divides up the plaintext into equal size blocks and then encrypts each 

block, resulting in an equal size ciphertext output. One of the main problems with ECB is 

that unless a key is changes, a plaintext block will always encrypt to the same ciphertext. 

This allows attackers to use common occurring plaintext headers or footers, at the 

beginning or end of messages, and cryptanalysis techniques to decode the message. 

Alternatively, if an attacker is able to recover matching plaintext and ciphertext, they can 

match up the ciphertext blocks to other ciphertext messages encrypted with the same key 

and discover the plaintext corresponding to those ciphertext blocks. Aside from weakness 

of confidentiality, ECB mode offers no integrity protection. A malicious attacker can re-

arrange ciphertext blocks and the recipient is still able to decrypt the ciphertext. The 

plaintext may not make sense, but the recipient is left to wonder if the message has been 

altered or not. Consequently, more defensive block encryption schemes that overcome 

these problems are available, but with a performance cost.    

 One of these schemes is counter (CTR) mode encryption [27, 28]. This mode 

essentially turns the block cipher into a stream cipher, with a one-time pad encryption, 
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meaning that the ordering of stream bits added to the plaintext bits to encrypt them is 

unique and will not be re-used again. The counter can be derived by any function 

guaranteed to not repeat for as many increments as required by the security settings. In 

this scheme, an Initialization Vector and counter are used to ensure that each plaintext 

block that is encrypted differs, even if the plaintext blocks are identical. An Initialization 

Vector (IV), often called a nonce, is a random value that is input to a block cipher in 

order to provide randomness to the cipher, in case similar data is encrypted with the same 

key multiple times. Figures 2 and 3 illustrate the differences between ECB and CTR 

mode block encryption: 

 

 

 

Figure 2. ECB Mode Encryption 
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 ECB mode divides the plaintext up into equal-size blocks and then encrypts them 

one-by-one into equal size ciphertext blocks. The decryption process is the reverse of the 

encryption process, using the same key.  

 

 

Figure 3. CTR Mode Encryption 

 CTR mode encrypts an IV and sequence number in order to provide randomness 

to the plaintext. The result of this encryption then acts as a one-time pad in stream cipher 

encryption mode, XORing the plaintext with the output of the encryption algorithm in 

order to calculate the ciphertext. The decryption process is the reverse. Note that in this 

method, the decryption IV must match the encryption IV. This IV does not need to be 

secret, but must not repeat, otherwise the one-time pad is not be unique.   

 Message authentication codes (MACs) and message digests provide integrity 

protection [26-28]. They assure that any manipulations of a message in transit are 
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detected. A good message digest is obtained via a strong hash function, a one-way 

function that inputs an arbitrarily long number of bytes and outputs a fixed length random 

digest. Strong means that the digest is necessarily random and has a low probability of 

having a value that collides with another hash function of a different value. MACs take 

integrity protection a step further by not providing any information about the plaintext. 

This is because a MAC can only be generated with the proper key, and thus a malicious 

attacker has no insight into what file generated the MAC. Because the key is used, 

authentication is proven by use of a MAC. A common way to provide a MAC is to hash 

the plaintext and encrypt this hash. There are more advanced protocols that combine the 

previously discussed goals of cryptography into a single block cipher. These are 

discussed next.      

 For the purposes of Git encryption, a system that always produced the same 

ciphertext by using the same key and IV for a given plaintext is desired. Additionally, a 

scheme that uses AES block cipher is the chosen algorithm based on security robustness 

and speed. The block cipher offers the option of seamlessly having integrity and 

confidentiality built into the algorithm [28, 29]. Rogaway and Shrimpton define Synthetic 

Initialization Vector (SIV) as a scheme that “deterministically turns a key, a header, and a 

message into a ciphertext.” [29] It takes the name because the Initialization Vector in 

synthetically created via data within the plaintext. SIV encryption is later defined in RFC 

5297 [30] and uses a Pseudo-Random Function (PRF) called String to Vector (S2V) and 

AES-CTR mode block encryption. SIV encryption builds upon Galois-Counter Mode 

(GCM), which also provides deterministic authenticated encryption [31]. Operating at 
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high speeds with low overhead, similarities to SIV encryption exist, as GCM mode is 

often combined with AES-CTR mode but differs in its hashing. GCM uses the GHASH 

function, not the S2V function. GCM requires an IV to be input, rather than synthetically 

generated, which can cause issues in security. This research, however, generates the IV 

by using a 128-bit secure random number generator, providing 128 bits of randomness to 

the IV.   

 GCM is widely accepted and certified by NIST [31]. GCM encrypts using the 

specific block cipher mode – in this case 128-bit AES CTR mode encryption. GCM 

outputs ciphertext and an authentication tag that is appended to the ciphertext, enabling 

the receiver to decrypt and compare the authentication tag generated during decryption to 

the authentication tag appended to the ciphertext. This allows the receiver to verify that 

the message was not altered by matching the authentication tags. If they differ, then the 

integrity of the message is compromised. The Figure 4 shows the high-level block 

diagram of encryption and decryption process of GCM: 

 

Figure 4. GCM High Level Encryption [31] 
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 The plaintext, a unique IV, and any additional authentication data desired (not 

used in this research) is passed to the GCM encryption function, where the data is 

encrypted and the authentication tag is generated. The output of GCM encryption yields 

ciphertext and appends the authentication tag to the ciphertext. The decryption process is 

shown in Figure 5: 

 

 

Figure 5. GCM High Level Decryption [31] 

 The encrypted data and the IV are passed to the GCM decryption function, where 

the ciphertext is decrypted into plaintext data and the authentication tag used to determine 

if the data has been altered.   

 The appropriate security depends on the scenario for usage of the protocols. With 

Git encryption, confidentiality is the main concern – in that if a third-party were to 

overtake the cloud provider where the Git repositories are stored, they would not be able 

to glean any information regarding the plaintext. Integrity protection is a secondary goal, 
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because the software developers should be able to know if the data has been altered or 

not. SIV encryption is currently one of the best performers concerning deterministic 

authenticated encryption, in that the S2V function almost entirely guarantees there will be 

no nonce reuse at even a higher rate than the NIST approved GCM mode [29]. Even so, 

there are faster methods of obtaining confidentiality and integrity. Encrypting via AES-

CTR mode and then hashing the encrypted data all in a multi-threaded parallel 

application is faster than both SIV and GCM. In a single-threaded application, however, 

without taking advantage of parallelization with custom code modification to 

cryptography libraries, GCM and AES-CTR mode with a secure hash have similar 

performance.    

Version Control 

At its core, a version control system allows multiple users to store changes 

between different versions of files and switch between versions or merge them with ease. 

Some popular features prevalent in most version control systems are the ability to backup 

and restore files, synchronization of files, undoing changes, tracking ownership, 

branching, and merging changes [32]. All of these combined promote efficient software 

development and support the processes associated with software configuration 

management.  

Some file systems have version control built in, such as Google File System and 

Bigtable [20, 21]. A dedicated version control system, however, benefits as it has 

functionality specific to the task of version control. There are several popular open source 

and commercial version control systems that have been developed through the years. 
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Clearcase was an early commercial product developed by IBM in the 1990s and 

implemented configuration management version control [32]. Subversion is currently a 

very popular open source version control system. These are both examples of centralized 

version control systems [1].  

Centralized version control systems are characterized by a single source 

repository. This single, so-called master repository is accessed by all developers to check 

out and check in version commits (i.e., revisions) [33]. There should be a limited list of 

who has access to write to the central repository. This type of system has worked well in 

the past, but poses a challenge with regard to scalability and limitations in work flow.  

Addressing scalability and work flow limitations, decentralized version control 

systems have been developed [4, 33]. These include systems such as Git, Mercurial, 

Bazaar, and BitKeeper (as stated in the introduction chapter, Git is the most popular of 

these). These decentralized version control systems allow developers to check out or 

clone an existing repository for their own use and have full rights for that instance. 

Because each branch in a distributed repository is a full repository, a canonical branch is 

identified by convention within the development group. This branch is deemed ‘central’ 

and is stored in an easy to access location and what most developers work off of. Some 

projects may have several principle branches. Distributed version control systems also 

provide multiple backups in case of failure of one of the repositories and limit the load 

placed on a single repository.   

Linus Torvalds published the first version of Git in April 2005 [34]. Git was 

originally designed and developed for Linux Kernel management. It has since grown very 
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popular and is now used in many software projects. Git fully mirrors each repository in a 

distributed environment and stores full snapshots of each file version in a repository, with 

references to any file that changed, similar to a mini file system [1]. This approach gives 

Git a very powerful branching functionality. Other version control systems store changes 

made to individual files over time, rather than snapshotting the whole repository every 

commit. Figure 6 shows an example of Git storage:  

 

  

Figure 6, Git Storage [1] 

Integrity is built into the internal structure of Git. Every file in a Git repository is 

check summed with a SHA-1 hash, a one-way function with arbitrarily long input and a 

pseudorandom and fixed length output, when checked in, items are stored by hash 

reference instead of file name [1]. The data object is called a blob and stores the contents 

of a file. Git also implements tree objects, commit objects, and tag objects [3]. Tree 

objects serve as a directory, referencing other trees and/or blobs with reference pointers. 

Commit objects link a physical state of a tree with a description of the commit. Commit 

descriptions are defined by: the name of the tree object, parent node(s) representing the 
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previous steps in the history of the project, an author who wrote the change, a committer 

who took the commit action, and a comment description of the commit. Lastly, the tag 

object is not often used and is a method in which an individual may ‘tag’ an object with a 

message. An example of this is to provide their signature as a tag. The objects can be 

easier understood visually. Figure 7 shows the visual organization of the three main Git 

objects (commit, tree, and blob), their internal structure, and how they reference each 

other (note that the data, such as the hash reference, is abbreviated).  

 

 

Figure 7. Git Objects [3] 
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 Git compresses the contents of files with zlib, a software library for data 

compression [1, 3]. This makes the files by default compressed within the blob. Since Git 

stores snapshots of each file that changed, however, multiple copies of the same file 

increase the size of the repository linearly. It turns out that while the references are to 

snapshots containing entire files, Git is able to store only the deltas between the objects. 

The initial form of object storage is called loose object format. Git occasionally packs 

several of these objects into a single binary file, called a packfile. The blobs by default 

are not compressed. Git internals run a routine maintenance on the objects. This 

maintenance is automatically run when Git deems it has too many loose objects around, 

or the garbage collection command can be run within Git to pack the files. Additionally, 

when objects are pushed to a repository, garbage collection is run to compress the objects 

before the push is executed. Git’s garbage collection uses a set or heuristics to find 

similar objects and the deltas between them. Garbage collection then compresses the 

repository by storing the object and the deltas between different versions. This is stored 

as data in the packfile. The packfile is in a binary format and has a main header, as well 

as headers for each individual object, which describe the size and type of objects. 

Garbage collection also creates an index file that contains the offsets for each object. The 

index file references the packfile so that the deltas can be unrolled between different 

versions for examination. The packfile is critical to the efficient storage of Git. The index 

file and packfile formats are shown in Figure 8:  
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Figure 8. Git Packfile and Index Example [3] 

  

 Git is by default set up to handle ASCII files, however, filter functions are built 

into Git [1, 3]. These are the smudge and clean filters and they allow data to be modified 

as it travels to and from the repository. By editing the .gitattributes file, one can configure 

certain types of files to pass through the filters, which are scripted code or programs that 



 

26 

are referenced in the Git configuration file. Many Git filters currently exist, such as for 

binary files or word documents, along with the functionality to create custom filters. 

Once the filter is chosen, it must be linked to git config settings. The smudge filter is run 

on Git checkout, shown in Figure 9: 

 

Figure 9. Git Smudge Filter [1] 

  The clean filter is run on Git add, shown in Figure 10: 

 

Figure 10. Git Clean Filter [1] 
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Research Background 

Although little published literature is found concerning a secure Git 

implementation, there is a plethora of published research on securing the public cloud 

[15, 35-37], deterministic authenticated cryptography [29, 30], other version control 

systems [32-34], and work which uses Git as a file-system [38, 39]. There are some 

papers regarding the need for transparent Git encryption and another on how it should be 

done [40, 41]. Robinson goes further to implement GitBAC: Git-Based Access Control in 

his paper, “GitBAC: Flexible Access Control for Non-Modular Concerns” [42]. This 

paper is an ideal stepping stone for this research. The referenced paper has similar goals 

but does not fall in line with the functionality, infrastructure, and security goals of this 

research. The paper describes GitBAC as a proxy between the user and the Git-Server, 

controlling access based on an access control list. In this setup, both the proxy and the Git 

server have to exist on protected and trusted resources, as the Git repository is not 

encrypted. This research has the goal of storing the Git repository on any cloud 

computing environment in order to take advantage of the economical and computing 

performance of cloud computing [13]. A diagram of GitBAC is shown in Figure 11: 

 



 

28 

 

Figure 11. GitBAC Diagram [42] 

There are three different open source Git-encryption schemes that can easily be 

found through web search: Gcrypt, Git-encrypt, and Git-crypt [43-45]. These 

implementations appear to be developed by individual hobbyists and lack much 

information or detail with regard to verification and validation testing. Gcrypt uses GNU 

Privacy Guard (GPG) to encrypt a remote repository and access it. It is listed as a 

development version, and was omitted from thorough testing for the reason that it is still 

a work in progress. The other two, Git-encrypt and Git-crypt are both complete projects 

and are evaluated in this research. Both use Git’s smudge and clean filters to allow the 

custom code to intercept and edit data as it interfaces with the repository. The two 

implementations encrypt the data when adding it to the repository and decrypt the data as 

it is checked out of the repository.  
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Git-encrypt is a series of scripts written by Woody Gilk [43]. Git-crypt is a C++ 

library written by Andrew Ayer [44]. Due to the nature of command line scripts, Git-

encrypt is much slower than Git-crypt’s implementation. Git-encrypt calls OpenSSL 

cryptography library command line functions. The default cipher used is AES-256-

Electronic Code Book (ECB), which is not semantically secure for messages containing 

more than one block of data, as discussed earlier in this chapter. This type of encryption 

is chosen to examine a range of encryption techniques, as the Git-crypt implementation is 

more secure. However, Git-crypt test results show that it does not allow for the same 

repository size compression as Git-encrypt. Referring to Git-encrypt, a user can change 

the cipher mode to any OpenSSL scheme, such as cipher block chaining. One problem 

with alternative block modes is that there is no flexibility for selection of IVs. The 

implemented IV is not random, which results in insecure encryption for all schemes 

requiring a random initialization vector. Additionally, there is no MAC implementation 

to verify the integrity of the message.        

Lastly, the user has the option of picking a password and a salt [43], a random 

value that is appended to a password. The added functionality of a salt provides more 

security to the password. If the user chooses, the password or salt can be set to random. If 

the user inputs both of these variables, then there is no check to ensure that they are 

indistinguishable from uniformly random. A user could choose two words found in a 

dictionary and thus an attacker would have an advantage in breaking the combination by 

brute force techniques of common word combinations in an attack. If the user decides to 

select the random choice implemented in Git-encrypt, the code calls the Linux 
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/dev/random function. As a robust function, Linux /dev/random is proven to not be 

indistinguishable from uniformly random, and not secure [46].  

Git-crypt is faster than Git-encrypt, since it is written in C++ [44]. It also provides 

more cryptography functionality, but without cryptography settings options. The 

algorithm uses AES-256 counter mode with an IV derived from SHA-1-HMAC hash 

(this is nearly identical to the GCM mode discussed earlier, with subtle differences). This 

scheme of hashing the message and then encrypting it provides a random IV derived from 

the message. This is because the hash is a pseudo random function with the input 

determined by the file. Since the file is used to generate the IV, then deterministic 

authenticated encryption is achieved. Recall from the beginning of this chapter that this 

means that the same plaintext will yield the same ciphertext since the IV is derived from 

the plaintext via a set function rather than an incrementing counter or timestamp [35]. 

Recall from the cryptography section that this encryption uses two separate keys, one for 

the hash and one for the AES-CTR encryption. Integrity is provided as the decrypted 

message is passed to the hash function to check the output IV versus what was received. 

If the output IV and the received IV match, it is determined the message was sent from 

someone with a correct key and has not been altered [28].  

Since Git typically involves several parties working with the same information, a 

plaintext query must yield the same ciphertext query. Combining authentication and 

encryption is a good practice and works in many scenarios [28]. Deriving the IV from the 

hash of the message also determines (with very high probability) the same IV will not be 

reused to encrypt a different message. 
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In Git-crypt, the key is derived using the RAND_bytes_openssl function [44]. 

This key is stored unencrypted locally, which could be destructive if malicious attackers 

could access the hard drive and reveal it, so the user must protect their own key.   

There have been complaints about using filters to encrypt Git on the basis that it 

takes away from the lightweight and efficient design [47]. These are valid concerns, but 

in order to fully collaborate in a seamless and non-intrusive manner with encryption 

transparent to Git, a Git encryption implementation is needed. There is usually a 

performance trade-off for security, and the decision must be made to make sure the 

benefits outweigh the costs. Having described the security aspects of these two open 

source implementations, this thesis examines performance compared to unencrypted Git 

and also introduces a new implementation, named Git Virtual Vault, that improves upon 

them with regards to performance. The results are documented and provided so that any 

user has all of the information necessary to make their own decision.    

In the subsequent chapters discussing methodology and results, the analysis 

shows that the time it takes to use the clean and smudge filters in order to encrypt and 

decrypt data is not substantial enough to turn away potential users. The size increase of 

the repository, however, will be enough to turn away potential users in some cases. In the 

case of a very small change in the plaintext, the Git-crypt repository grows linearly. This 

is because the change in the plaintext alters the IV, which in turn alters all of the resulting 

ciphertext blocks. The result is that a very small change in the plaintext results in a copy 

of the whole repository being stored. Since very little of the ciphertext is identical, the 

robust garbage collection within Git is unable to compress efficiently, resulting in a large 
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repository size. This is not the case with the testing of Git-encrypt, since the 

implementation tested uses ECB block cipher encryption. This encryption only changes 

the ciphertext blocks corresponding to the changed plaintext blocks. But, as discussed 

earlier, this is not a secure method of operation.  

The inefficiency of compression using Git-crypt brings further research into 

whether or not the IV must always be unique, or if the IV could be based on the hash of 

the filename, or something more constant, for example. While this would indeed 

introduce the same compression qualities of ECB mode, it would destroy the security of 

the protocol. Recall from the cryptography section earlier in this chapter that the resulting 

IV is used as input to the block cipher encryption function, which has the output xor’d 

with the data. Thus this portion acts as a stream cipher. Since it is a simple xor, using the 

same ‘key’ to xor twice results in what is known as a two-time pad, which is insecure 

[26, 27]. Counter mode in equation form is essentially: 

𝐶 = 𝑃 𝑥𝑜𝑟 𝐶𝑇𝑅(𝑘𝑒𝑦, 𝐼𝑉) 

CTR is the AES counter mode with input of the symmetrical key and IV. If two 

different plaintexts, say P1 and P2, are encrypted with the say Key and IV pair of values, 

then the result is:  

𝐶1 = 𝑃1 𝑥𝑜𝑟 𝐶𝑇𝑅(𝑘𝑒𝑦, 𝐼𝑉) 

𝐶2 = 𝑃2 𝑥𝑜𝑟 𝐶𝑇𝑅(𝑘𝑒𝑦, 𝐼𝑉) 

Since any value xor’d with itself will cancel out, the CTR(key,IV) output will 

cancel out, thus allowing that: 

𝐶1 𝑥𝑜𝑟 𝐶2 = (𝑃1 𝑥𝑜𝑟 𝐶𝑇𝑅(𝑘𝑒𝑦, 𝐼𝑉)) 𝑥𝑜𝑟 (𝑃2 𝑥𝑜𝑟 𝐶𝑇𝑅(𝑘𝑒𝑦, 𝐼𝑉)) 
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After cancelling the CTR(key,IV) identical function, we get: 

𝐶1 𝑥𝑜𝑟 𝐶2 = 𝑃1 𝑥𝑜𝑟 𝑃2  

Now the attacker can use common techniques of frequency of English characters, 

or headers or footers for code to guess the proper plaintext and crack the whole 

repository.  

There is no valid way to securely use counter mode with HMAC, as is done in 

Git-crypt, with a reuse of the IV [44]. This is the shortfall that is examined and attempted 

to overcome in the new Git encryption implementation. Git filters are very useful for 

modification of individual files as they are checked out from a repository or added to a 

repository [1, 3]. Git filters, however, modify the data one file at a time, before the data is  

added to the repository as an object. With this order, the filters operate on the data before 

it can be compressed with the rest of the data in an object. If there is a way to add the data 

to the repository and then encrypt objects, this would help solve the problem of the size 

growth of the repository. Since Git is open source, there a few options to modify it in this 

manner. One is to analyze the code of Git and modify it. Another, and more viable 

option, is to engage with more expansive libraries for Git, to use the benefits of Git but 

also take advantage of needed features not found within.  

Two external Git libraries are JGit and libgit2 [48, 49]. These two libraries 

provide an Application Programming Interface (API) for various languages to directly 

work with Git repositories and functions. They essentially provide a back-end Git 

infrastructure, allowing for the developer to create a new front end, fitted to the purpose 

of their application.   
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JGit is a lightweight pure Java library implementing Git [48]. It is open source, 

developed by Shawn Pearce, and licensed by Eclipse, a popular Integrated Development 

Environment (IDE). JGit has very few dependencies, making it suitable for embedding in 

Java applications. JGit was originally created with the goal of providing an Eclipse plugin 

for working with Git but grew to expand Git functionality and offer many additional tools 

for Git repositories. There are several developers working on JGit, with new functionality 

being added often. JGit has the advantage of full integration of Git, and additional 

functionality beyond traditional Git, within a Java object oriented design [50].   

Libgit2 is a pure C implementation of Git core commands [49]. It allows 

developers to write custom Git applications in any language supporting these C bindings. 

It is also an open source project like JGit and provides similar functionality. The full 

libraries of commands are available via the C++ implementation, but libgit2 also has less 

inclusive language bindings developed for languages such as Ruby, Python, Perl, PHP, 

and C#, to name a few. 

Both libraries are analyzed in detail and some of the main developers contacted 

via e-mail. The decision of this research is to use JGit for Git modification because of the 

portable nature of Java, sponsorship by Eclipse, more thorough documentation, and more 

commands and functionality, when compared to libgit2. JGit allows one to implement 

Java encryption libraries at the transport level, either locally or remotely. This allows 

objects to be encrypted as they are pushed to or pulled from a remote or local repository. 

This functionality allows the new Git encryption implementation, named Git Virtual 

Vault, to take advantage of all of the efficient and lightweight features of Git, including 
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the garbage collection function, and still maintain a secure repository on an unsecure 

cloud.       

The final item related to version control that is researched in this thesis is the 

topic of how distributed version control systems, particularly Git, are used today by 

various entities. This research came about because it is important to know who the 

general audience of a product will use it, so that usage habits can be learned and analyzed 

in order to provide a product that meets the average well-rounded user’s needs, with 

testing that a user can relate to.  

There are several general studies regarding the natures of commits. One in 

particular in which authors Hattori and Lanza seek to quantify the size of small and large 

commits within version control systems [51]. Alali, Kagdi, and Maletic [52] dig into what 

a typical commit represents, in trying to characterize open source software repositories. 

In their research, the authors study nine open source software systems to uncover 

characteristics of how developers use commit commands in version control systems. 

They find that roughly 75% of commits are small and the messages that are included with 

the commits can be correlated to the size categories of the commits. In addition to the 

size of commits, Kolassa, Riehle, and Salim [53] explore the commit frequency 

distribution of open source projects in order to further understand the software 

development process. Other research is analyzed dealing with characterization of version 

control systems, amassing version control system repositories into a census type study, 

and also software engineering practices of open source projects [23, 54-56]. These are all 
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interesting software engineering studies, but the research is found to be too high level for 

the goals of this thesis.  

For details regarding developing a Git modification application for an audience 

and how consumers of that application are going to use it, specific random and targeted 

data is needed about the actual number of files and also size of files of each commit. 

Also, language specifics are desired. Gousios and Spinellis [57] explore GitHub, a 

popular project hosting, mirroring, and collaboration platform for projects using Git. In 

their research, they explore the GitHub extensive REST API, which enables researchers 

to gather specific information from the public repositories hosted on GitHub. This 

research does not go to the low-level desired in this current thesis, but provides a look 

into a tool that is usable.  

Further research finds that there are websites dedicated to mining GitHub data. 

This is beneficial because these sites provide up to date data and as outlined in the 

introductory chapter, version control system usage is rapidly changing. One such site is 

GitHub Archive [58]. This site began in 2012 and archives GitHub repository events, 

such as pushes and pulls from the repository. Each archive contains a JSON encoded 

stream of these GitHub events, allowing processing in any language. The dataset is also 

available via Google’s BigQuery, and can be accessed online via queries over the dataset 

in a matter of seconds. While this archive does not encompass the entire data history of 

GitHub, it does provide a very fast and user-friendly way of mining GitHub data without 

the query frequency restriction limits imposed by GitHub. A combination of data mining 

using this GitHub archive and also the GitHub API [59] provides the tools necessary for 
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characterization of Git usage. This characterization comes in terms of commit habits, 

push habits, repository size, and language differences.  

Summary    

 Git is a popular distributed version control system. As computing moves from 

local and secure to offsite and cloud computing centers, security concerns arise. This 

chapter explored security to provide a basis for understanding why a specific protocol is 

chosen. It went on to provide a more detailed look at the origins of version control, and 

the functionality and internal structure of Git, so that the reader has the knowledge 

necessary to understand the Git encryption implementation. The chapter then discussed 

various Git encryption implementations and concluded with software engineering 

research characterizing usage of Git. Chapter III discusses the methodology necessary for 

analyzing and demonstrating the proposed secure Git implementation solution.  
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III.  Methodology 

Chapter Overview 

The previous chapter gave background information relevant to this research and 

then characterized the security of different existing Git encryption implementations, 

based on the cryptography protocols used. The goal of this thesis is to find or develop a 

viable secure Git implementation that can be used while working with sensitive data in 

unsecure environments. If successful, this will allow organizations that work with 

sensitive data to take advantage of today’s efficient cloud computing environments and 

use Git in a secure distributed manner, without degrading performance [13, 25]. This 

research methodology describes the tests to analyze existing Git encryption 

implementations by comparing their performance relative to unencrypted Git, as well as 

to each other. Proper methodology proves the hypothesis that encryption of a Git 

repository is possible without overly degrading the performance of Git and losing the 

functionality of Git.  

As discussed in Chapter I, distributed version control systems are rapidly gaining 

popularity among software developers and Git has become the most popular distributed 

version control system [6]. Git was created for open-source, non-secure environments, 

but its usability and performance is desired by those who work with sensitive data. There 

is no formal research or methodology characterizing or analyzing any Git encryption 

methods. This research fills a large hole in answering the question of whether Git 

repositories can be encrypted to be used in a secure manner for sensitive projects. The 

hypothesis of this research is that this is possible. This research contends that Git can be 
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used with encryption while still maintaining relevant performance and functionality that 

enables it to be efficient for real-world projects.  

In order to show the validity of this hypothesis, a three-phased approach test 

methodology is used. Phase One consists of testing existing Git encryption 

implementations and base lining their performance through analysis and characterization. 

This phase is called the Secure Git Baseline Phase. The analysis of this phase is 

accomplished through a series of three broad, worst-case type scenario, controlled tests. 

Each test measures a unique performance metric. Two existing Git encryption 

implementations are tested and analyzed: Git-encrypt, a series of scripts written by 

Woody Gilk [43], and Git-crypt, a C++ program written by Andrew Ayer [44]. They are 

analyzed and compared to unencrypted Git in terms of functionality and performance.  

Phase Two consists of characterizing Git usage habits in order to provide realistic 

and accurate information to make the decision as to when a secure Git implementation 

becomes unusable for practical purposes, from a performance standpoint. Having this 

information allows for determining that Git encryption works under realistic scenarios. 

This phase is referred to as the Git Characterization Phase. As discussed in Chapter II, 

high-level overview research has been performed in the area of characterizing version 

control systems [52-57], but this research does not provide enough detail to fully 

understand the intricacies of how software developers use Git. More detail is needed to 

emulate Git usage in detailed terms of commit frequency, commit size, how many files 

are changed per commit, how many lines in each file are changed, and the variance by 

languages. This is new research and contribution to the software engineering community. 
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With this information, a proper Git usage emulator can be created in order to simulate Git 

usage for a repository over a particular amount of time. Having an accurate simulation 

provides higher confidence that Git encryption can be used for a variety of different 

projects, as different settings can be tested and results analyzed. In order to retrieve real-

world Git repository data, GitHub repositories are mined via the GitHub Archive [58] and 

the GitHub API [59].        

Phase Three consists of developing an improved secure Git implementation that 

addresses the shortfalls of the previous Git encryption methods from Phase One. This 

phase is referred to as the Secure Git Improvement Phase. This new implementation was 

briefly described in Chapter II and retains the rigorous security that the cryptography 

protocols used in Git-crypt provide but overcomes some of the performance shortfalls. 

This new secure Git implementation is aptly named the Git Virtual Vault (or GV2, 

pronounced G-V-squared). There are many types of vaults, but in general a vault is a 

secure container in which items of value are stored. The vault can only be opened by 

using the proper key, which is only given to those with controlled access to the vault. 

This new secure Git implementation is a virtual vault, meaning it is a secure and enclosed 

virtual location, such as used in cloud computing. The items of value stored in this virtual 

vault are sensitive Git source code files. These items are only valuable if they are 

obtained in plaintext. Thus, the vault is made secure by encrypting all of these sensitive 

files and providing integrity protection so that those who do have access to the files know 

if someone has been altering them. From this discussion, this new secure implementation 
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is aptly named GV2. GV2 is the final product of this thesis research and demonstrates a 

valid secure Git implementation.    

Phase One: Secure Git Baseline Phase  

The initial phase of this thesis methodology consists of testing existing Git-

encryption implementations and obtaining a baseline of their performance through 

analysis and characterization. The testing analyzes performance in terms of CPU time, 

size, and functionality. Three distinct real-world Git repositories are tested with different 

function scenarios. The results show how each test compares in performance between 

unencrypted Git and two existing Git encryption implementations: Git-encrypt [43] and 

Git-crypt [44].   

 The first test repository is the Linux Kernel, selected for its wide-spread use and 

enterprise-like structure. Second is the Git program source code. This selection represents 

a medium-sized project with wide-spread use. Lastly, a small-scale program called 

Popping is found by looking through the popular repositories on GitHub, an online 

storage and sharing area for Git repositories [60]. It is developed by Schneiderandre and 

is a collection of animation examples of Apple iOS applications. The size characteristics 

of each are shown in the Table 1:  

 

 

 

 

 



 

42 

Table 1. Phase One Test Program Sizes 

Program Size Objects Commits 

Linux Kernel 135.8 MB 48510 451,700 

Git Program 5.18  MB 2689 36,684 

Popping Program 0.11 MB 179 95 

 

Phase One, Experiment I: Adding all files to the initial repository  

 The first test characterizes the performance of initializing a brand new repository. 

This scenario is the worst-case for a project in terms of computing because every file is 

new to the repository and is passed through the encryption filters. This test is performed 

by initializing a new repository using the ‘git init’ command. Next, all of the files of the 

existing repository to be tested are copied to this new repository folder location. Then the 

‘git add’ command is run with a wildcard argument, which stages all the new files, 

regardless of name. To stage the files, Git passes them through the Git filters as they are 

staged. Next, the ‘git commit’ command is run, committing the files in the staging area to 

the repository. This complete process is timed and repeated a total of ten iterations for 

consistency of results. 

Phase One, Experiment II: Initial size comparison  

 Once the files have been committed, the size of each repository is recorded and 

compared each other. This comparison is done using the ‘git count-objects’ command. 

The size is recorded and then the garbage collector is run. The garbage collector in Git 

compresses the data within the Git repository by using a set of heuristics programmed in 
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the internal structure of Git. This garbage collection is automatically run during some 

circumstances or can be run manually using the ‘git gc’ command. After running this 

command, the size of the repositories is compared to see how the unencrypted Git data 

compression compares to the data compression of two Git-encryption implementations. 

Phase One, Experiment III: Size growth with file modifications  

 The final test measures the worst-case scenario of editing all files in the 

repository. Only a small number of bytes are edited, but since every file is changed, every 

file must once again traverse through the Git filters to the staging area and be committed. 

This test is used for comparison to see how much a small change in data among a large 

number of objects has on the size of the repository. The test characterizes the inefficiency 

of the storage size of encrypted Git and determines the effectiveness that the garbage 

collection has in compression over a series of commits. The test runs a script to append 

the text “hello” to all files within the repository. The files are then added to the staging 

area using the ‘git add’ command. Then the files are committed to the repository using 

the ‘git commit’ command. The Linux Kernel test is performed by running this method 

five times and then running the garbage collector after the fifth iteration. The Git program 

test is performed by running this same test but running garbage collection after each 

iteration, to see if there are any differences that can be seen versus waiting until the last 

iteration as with the Linux Kernel test. Differences in the compression of the data based 

upon when the garbage collection is run show in this method of testing. Lastly, the 

Popping program follows the Git program test procedure.  
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 The test bench for these test cases is a basic Linux environment. Specifically they 

are run on Ubuntu-64 bit operating system running on a virtual machine within VMWare 

Workstation utilizing one Intel Core I7 (3.6GHZ) processor and 4GB of RAM.    

 These three initial tests baseline the performance of existing Git encryption 

implementations in terms of how long simple commands take to run, the size increase in 

a repository when the contents are encrypted, and also the size growth increase in a 

repository when files within the repository are edited. Additionally, this test examines the 

garbage collection routine of Git, which is very important to performance. The results of 

these tests are fully examined in the following chapter. The initial premise before testing 

is that the performance will see a large increase in both time and size, as encryption takes 

time and it is hard to compress encrypted data. These both turn out to be accurate 

assumptions and the large size increase of the repositories, described in the experimental 

results section, show the need for the improved Git encryption implementation.  

Phase Two: Git Characterization Phase  

 The second phase of this methodology consists of characterizing Git usage habits 

from a software engineering perspective. This is done to provide realistic and accurate 

information used to show that Git encryption works under realistic real-world scenarios. 

This phase is aptly named the Git Characterization Phase and researches information 

necessary to emulate Git usage in terms of commit frequency, commit size, how many 

files are changed per commit, how many lines in each file are changed, and the variance 

by programming languages. The process of mining Git data consists of using two venues: 
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GitHub is mined via the GitHub Archive [39] for top level information and also using the 

GitHub API [40] for lower level details.   

 GitHub Archive can be accessed multiple ways. In this mining session, Google 

BigQuery tool [61] is used to mine GitHub with simple database queries. BigQuery is an 

analytical tool allowing for interactive analysis of large datasets via BigQuery’s SQL 

syntax.   

 For mining purposes, C++, Java, Javascript, PhP, and Python are chosen as they 

have varying syntax programming paradigms and represent some of the more popular 

languages both presently and over the past decade. The first experiment with this data is 

mining a set of repositories of each language and comparing push data to distinguish 

activity differences in the repositories. The entire base of repositories does not need to be 

analyzed in order to draw a conclusion. The API for BigQuery contains a hash function 

which is used in this script to select random repositories. The script consists of selecting 

repositories according to language, then ensuring they are recent and have been created 

within the last two years (for relevancy purposes), then randomly selecting a repository 

from the results, then ensuring the repository includes data and is not an empty initialized 

repository. Lastly, the repositories must be somewhat active (not a one-time creation and 

push, etc.). In order to ensure this, a minimum number of pushes of 30 is chosen. This 

equates to roughly two updates a month under the two year recent repository selection 

constraint. In a project needing security, any less than this would allow a system with 

inefficiencies to be sufficient and the efficiency targets pursued in this study would be 
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unnecessary. An example of the BigQuery environment and Java language query is 

shown in Figure 12: 

 

 

Figure 12. BigQuery Java Query 

  

 From the example query above, one can see the easy to use interface. The results 

are shown in the web browser and then downloaded to a .csv file. Next the results of the 

five queries are imported into the RStudio integrated development environment and 

analyzed. The push data is first analyzed and plotted to determine frequency of usage 

differences in the languages. Then the sizes of the repositories are compared to determine 

if language makes a large difference in terms of size. The R Script run in RStudio is 

shown in Figure 13: 
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Figure 13. RStudio repository push and size data 

  

 The results of the push data collection and analysis are shown in Figure 14 (note 

that the thick line on each bar represents the mean of the data for each language and the 

box encompassing each language field represents the 95% confidence interval for each 

language). The push data collection from the five different languages is very similar, as 

the 95% confidence intervals overlap. The average total pushes for each repository over 

the past year is around 40. 
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Figure 14. Git Push Data 

   

 The repository size data, shown in Figure 15, is much different than the repository 

push data. The size of the repositories that contain Java, PhP, Javascript, and Python 

source code are all relatively the same, but C++ language repositories are nearly twice the 

average size of the others and the 95% confidence interval extends much higher in size 

quantity:  
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Figure 15. Git Repository Size Data 

 After these two high level characteristics of the languages are analyzed, a subset 

of random repositories is chosen in order to test at a more detailed level using the GitHub 

API. 15 samples are chosen: 3 from each of the 5 chosen languages and spanning 3 

different repository size categories of small, medium, and large. Small is defined as less 

than 10 MB, Medium is between 10-100 MB and large is greater than 100 MB in size. 

The resulting repositories chosen are shown in order of small to large in Table 2. The 

name, language, size in KB, and number of pushes in last two years is shown: 
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Table 2. GitHub Random Repository Selection 

Name  Language: Size (KB): Pushes: 

Devnull PHP 4028  51 

ComputerNetworks Python 133 51 

Restfiddle Java 1372 38 

Intouch2 JavaScript 1992 54 

CoolProp C++ 9926 51 

EZ Publish PHP 38201 60 

1PICNIC Python 30856 51 

TetraWord Java 14023 50 

Syra JavaScript 15792 42 

FF2-Alpha C++ 29921 35 

Openvault PHP 125569 32 

Tendenci Python 168627 49 

Eucalyptus Java 145201 46 

Boost32Boost JavaScript 122692 2 

Nme C++ 223925 38 

 

 Additionally, 15 repositories from GitHub’s popular trending monthly category 

are also chosen as examples of popular repositories. Many of these popular repositories 

are hosted by well-known companies, such as Google or Facebook, and represent 

enterprise-like software, or at least software that is being worked on by many developers 

due to the popularity, rather than the random selection that could be enterprise or a solo 
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hobbyist. These selections are limited to the list that GitHub provides and not every size 

value for each language is represented. The frequency of commits in these repositories 

are higher as they are chosen from the popular repositories. Testing these determines if 

any differences between these and the random selection exists in terms of commit size. 

The selection is shown in Table 3:  

Table 3. GitHub Monthly Trending Repository Selection 

Name  Language: Size (KB): Sponsor: 

Typecho PHP 12212 Typecho 

PHPMailer PHP 4886 PHPMailer 

Google-api-php-client PHP 8586 Google 

Physical-web Java 4763 Google 

Iosched Java 21624 Google 

Spring-framework Java 257910 Spring-projects 

Fetch JavaScript 434 GitHub 

React JavaScript 81551 Facebook 

Meteor JavaScript 156780 Meteor 

Reddit Python 50746 Reddit 

iPython Python 126665 iPython 

Tornado Python 19756 TornadoWeb 

Mongo C++ 250912 MongoDB 

Hhvm C++ 312159 Facebook 

Atom-Shell C++ 18328 Atom 
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 In the same manner as the random repositories, these 15 popular selected 

repositories are tested in more detail using GitHub API [59]. The repository statistic API 

is chosen for this task, as it provides an API that allows fetching of data that GitHub uses 

for visualizing different types of repository activity. The main data needed for 

characterization is commit frequency, number of commits, and size of commits. To pull 

the number of additions and deletions, the code frequency command is used. This 

command returns the weekly number of additions and deletions pushed to a repository 

over the past year (additions are lines added and deletions are lines deleted). The format 

for this is the first number is the start of the week, as a Unix timestamp, and the second 

and third numbers are the additions and deletions. Each week is separated by brackets.    

To retrieve the number of commits on a repository, GitHub API offers a participation 

command, showing the total commit counts for the past year.  

 Rather than use individually formed HTTP GET requests, Curl program is used 

[62]. Curl is a free, open source software that consists of a command line tool and library 

for transferring data via URL syntax, supporting multiple protocols. It is used in 

thousands of applications for its ease of use, which is the reason why it was chosen to be 

used in this project. As examples, the code frequency and participation requests in Curl 

are: 

  curl -i https://api.github.com/repos/:owner/:repo/stats/participation  

 curl -i https://api.github.com/repos/:owner/:repo/stats/code_frequency  
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 The output of these requests is JavaScript Object Notation (JSON) format, a 

simple key-value pair format, and is stored to a text file that can later be parsed and 

converted to a csv file for easy reading into RStudio for analysis. 

  Every software project on GitHub is not going to be constantly worked on every 

week, or have data pushed to it on a weekly basis. By separating the commit and data 

statistics by week, one can choose to only look at weeks in which work was done and 

then extrapolate over a year, or look for the full year as an average of the entire work 

done on the software project. Having the weekly commit frequency and the weekly lines 

of code additions and subtractions data belonging to those commits gives the necessary 

information to emulate software repositories. Pulling this data from multiple languages 

and sizes allows one to see if there are any large differences in the way repositories are 

worked on, based on size or language. Results of repository commit and participation 

rates are shown and analyzed in the Chapter IV. 

Phase Three: Secure Git Improvement Phase 

The final phase of this methodology consists of testing an improved Git 

encryption implementation, GV2, developed by the author of this thesis. The testing 

methodology is the same as Phase One - in terms of CPU time, size, and functionality. 

The testing consists of comparing unencrypted Git performance to encrypted Git 

performance. GV2 was briefly described in Chapter II and provides improved 

authenticated encryption standards of Git-crypt but overcomes some of the performance 

shortfalls, mainly the massive Git repository size increases over series of commits. This 
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testing methodology phase shows that GV2 performs better than the previous Git 

encryption implementations in key performance areas of size and CPU time.  

GV2 must have practicality for use determined according to the standard usage of 

Git provided by the Phase Two Git Characterization Study. The Secure Git Improvement 

Phase is the final phase of this thesis research and produces a product that demonstrates 

an efficient and secure Git implementation. In the end, it is up to the end-user to 

determine validity of software tool functionality and performance, according to their 

purpose, but with the characterization study research of mining real-world Git 

repositories, the end-user is able to fit their organization’s software development uses 

into the test and determine usefulness of a secure Git implementation under their work 

habits.    

Chapter II briefly describes two external Git libraries: JGit and libgit2 [48, 49]. 

JGit is chosen as the library to use for this Phase of research because of its increased 

functionality over libgit2 and portability of Java. Java is inherently slower than C because 

it is an interpreted language built upon a virtual machine known as the Java Virtual 

Machine [63-65]. Java code is compiled into bytecode that is run on Java Virtual 

Machine, which makes it slower than code compiled directly into binary sets of native 

instructions, such as C or C++. In recent years, however, Java has begun to bridge the 

performance gap with native languages.  

JGit allows combinations of traditional Git to be used in parallel with JGit, 

helping to overcome this speed performance deficiency. Switching from traditional Git to 

JGit commands, and vice versa, is transparent to the Git repository. In addition to a large 
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API, JGit offers a command line interface. JGit was designed in a modular fashion and 

allows for code to hook into almost every aspect of the internal structure of Git.  

JGit contains five different levels, or layers, of usability and functionality for 

interaction [66]. Level 0 is simply calling the executable JGit program. Commands at this 

level are called from the command line through a shell script or by executing the .jar file. 

Level 1 consists of embedding JGit into an existing Java process by using the JGit 

program’s Main class, org.eclipse,jgit.pgm,Main, and invoking the Main method. This is 

similar to level 0 but has the advantage that a new Java Virtual Machine does not need to 

be created every time JGit is invoked, allowing for quicker execution of multiple 

commands.  

The middle layer, level 2, involves using the JGit’s Git class to wrap a Git 

repository and provide a set of porcelain commands. Porcelain commands are defined by 

Chacon as verb commands doing low-level work on a Git repository [2]. The lower 

layers of Git functions that the porcelain commands works on is called the Git plumbing. 

JGit Level 2 is one of the more popular levels that JGit contains, according to JGit users, 

because it provides simplicity and flexibility with the option to use debugging tools 

within an IDE [66].  

Level 3 consists of the option to build porcelain commands by invoking instances 

of the JGit Repository class. This class allows developers to obtain more specific Git 

repository information, such as Git references, or to open specific branches and traverse 

them in the repository. The level 3 layer provides JGit users who are so inclined to add or 

modify the level 2 commands, but they are limited by the read-only nature of the 
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Repository class. They can combine this with RevWalk in order to iterate over commits, 

and essentially walk the whole repository.  If one wants to modify a repository, the final 

layer, level 4 comes in. Level 4 improves upon level 3 by adding read and write access 

and allows JGit users to get objects into and out of a repository via the ObjectInserter and 

ObjectReader classes.   

The levels of JGit functionality previously discussed provide a wide-range of 

uses, depending on the level at which one wants to access and modify a Git repository. 

These levels are the typical way in which developers use JGit, with level 2 being the most 

popular method [66]. All of these levels, however, deal with using JGit as it currently 

exists. There are more ways to intertwine specific JGit commands through code, as well 

as modifying JGit functions or adding new ones so that commands work uniquely to how 

the developer wants them to. JGit is open source and readily available for download and 

personal modification or community improvement via GitHub [48].  

Recall from Chapter II that traditional Git uses filters to modify data in transit to 

or from the repository [1]. Both Git-encrypt and Git-crypt use these smudge and clean 

filters to encrypt data as it passes to the Git repository and decrypt as it comes from the 

Git repository [43, 44]. Because the data is encrypted before it is added to the repository, 

the Git garbage collection delta compression routines are ineffective, as they are not 

programmed to operate on encrypted data.  

JGit has options for data modification using methods other than the smudge and 

clean filters [48]. JGit contains a Transport package that handles the transport network 

layer functionality of the repository. This layer deals with remote repositories, such as 
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repositories that reside in a cloud storage provider - the goal of this project. Within the 

JGit Transport package, a WalkEncryption class allows for encrypting or decrypting 

objects in the form of input and output streams of data being transferred at the transport 

level. This is monumental functionality for the goals of this project because it means that 

the Git repository is able to perform its built-in functions on an unencrypted repository 

and then compress the data via the garbage collection routine before uploading an 

encrypted stream to a local network or remote cloud service provider. Since the 

encryption occurs on the client side, the data is secure after it leaves the client, allowing 

for secure repositories to exist on untrusted cloud service providers.   

The current implementation of the JGit WalkEncryption class has a password 

based key derived using a locally stored password in a password based encryption (PBE) 

algorithm with an MD5 hash to generate the key. Once the key is generated, DES 

encryption is used. JGit contains an AmazonS3 class that uses JetS3t (pronounced “jet-

set”) to ease the functionality of operations on objects between JGit and AmazonS3 [67]. 

JetS3t is an open source Java library toolkit that contains functionality to link projects to 

cloud service providers such as AmazonS3, Amazon CloudFront, and Google Storage 

Services.   

The PBE algorithm with MD5 and DES is not within the cryptography goals for 

this research that are outlined in Chapter II. A password chosen by the user is not 

securely random [27]. Additionally, AES-CTR mode encryption is desired for this 

project. Java Development Kit does not inherently contain AES-CTR mode functionality. 

The solution for this is to integrate Bouncy Castle, a library of Java cryptography 
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functionality [68]. Bouncy Castle version 1.51 is used. 128-bit AES-CTR mode is used 

for data encryption and decryption. AES-CTR mode encryption relies on the property 

that the same initialization vector is not used to encrypt more than once. For this, the Java 

Secure random class is used [69]. This class provided a cryptographically strong random 

number generator with compliance to statistical randomness tests specified in FIPS 140-

2, Security Requirements for Cryptographic Modules [70]. Additionally, the output 

sequences are cryptographically strong, following the description of RFC 1750, 

Randomness Recommendations for Security [71]. For integrity protection, GCM, as 

described in Chapter II, is used in conjunction with the AES-CTR mode encryption, 

providing authenticated encryption [31]. The decryption process of GCM either outputs 

the plaintext or fails, indicating that the data is not authentic. Thus, if the data is modified 

by an unauthorized user while in the cloud, the user is alerted by an exception when 

trying to decrypt.  

 The size overhead of using GCM encryption is shown in Figure 16. Note that the 

plaintext data being encrypted has already gone through Git Garbage Collection, thus 

allowing for efficient compression of the plaintext data. Encryption before GC, as is the 

case with any encryption scheme that uses Git filters, does not allow for this 

compression.   
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Figure 16. GV2 Repository Size Increase Diagram 

Figure 16 shows the added components of overhead with the GCM encryption 

method used in GV2. First, the 128-bit IV is generated and pre-pended to the data in 

transit. Note that the IV is not encrypted – the only rule for it is that it is unique. The data 

is then encrypted (and optionally padded to fill out to exactly a block on the end). Lastly, 

the GCM authentication tag is appended to the end of the data. The maximum size of 

padding is 127 bits, for a total of 128 bits + 127 bits + 128 bits = 383 bits. This is less 

than 48 bytes of data. This again is minimal, as the popular repositories from Phase Two 

ranged from 434 KB to the hundreds of megabytes. Even just a 1% increase in size for 

the 434 KB Fetch program is 4.34 KB, or 4340 bytes. With Git-crypt, the best case size 

increase in terms of performance is 350%, with the Git Program. This size increase only 

gets worse as it has a linear increase and after five iterations of editing every file, the size 

increase in the repository is well over 1000%, compared to unencrypted Git. 
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The Git repository contains snapshots of the files that are being tracked by Git and 

under version control. The primary purpose of securing Git is to secure these files, which 

are stored as objects in Git, by providing confidentiality and integrity protection. This is 

what Git-crypt and GV2 do. Additionally, the remainder of the Git directory is examined 

to ensure that no other information is leaked. The .git directory folder stores the 

administrative portions of a Git repository, such as the configuration of the Git repository 

and the locations of branches and commits. [72]. The structure of a Git repository looks 

complex, but is easy to understand. Not all Git repository structures are identical – every 

.git structure is unique to the repository where it resides. Figure 17 shows a sample .git 

directory:  

 

Figure 17. Sample .git Directory [72] 
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The sample .git directory structure in Figure 17 is a typical example of a Git 

repository structure. Table 4 explains what the files (or directories) and values associated 

with them mean: 

Table 4. Sample .git Directory Explained [72] 

File/Directory Meaning 

Config The configuration file for the local git repository 

HEAD Lists a file to read that is the current HEAD branch: git branch will 

show the branch that HEAD refers to as the current branch. 

Refs Everything under the refs directory is references to a commit for a 

branch of some type (either a local branch or a remote tracking 

branch). 

refs/heads Files in the refs/heads directory are branch names. For example a 

file named refs/heads/master means a branch named master exists 

in the local repository. The contents of the file is the hash of the 

most recent commit on that branch. 

refs/heads/master The most recent commit on this branch (master). 

refs/heads/v1 The most recent commit on this branch (v1) 

refs/remotes Everything under the refs/remotes directory is references to a 

commit for a remote-tracking branch. 

refs/remotes/origin The remote tracking branches for the remote repository origin are 

stored in this directory. 

refs/remotes/origin/master Note the hash is the same as in refs/heads/master which means the 

user has merged the commits from this remote-tracking branch 

into the user’s master branch. 

 

The Git Config file and the Git references stand out. Recall from Chapter II that 

Git references are SHA-1 hashes [1]. These hashes are easily computed and can leak 

information about a repository. For example, if a file contains the text “Hello World” and 

is stored in the repository, a malicious user may know that “Hello World” is common 

source file contents and have a pre-computed SHA-1 hash for “Hello World.” This hash 



 

62 

could be stored along with several other pre-computed hashes, in what is known as a 

rainbow table [73]. The rainbow table is then compared to the references in the .git 

directory and if a match appears, then the plaintext corresponding to the reference 

becomes known based on the plaintext that generated the reference in the rainbow table. 

The above example is clearly fictional, but imagine if instead of “Hello World,” the files 

were actually a set of encryption libraries with a known vulnerability. In this case, the 

information leaked is critical to an attacker and something that the software developer 

does not want exposed.  

To defend against a rainbow attack vulnerably, the references must be securely 

hashed by using a keyed hash algorithm. This could have an effect upon the functionality 

and performance of Git. GV2 encrypts the .git directory files through the same GCM 

AES-CTR mode encryption functions that encrypt the repository file data objects. This 

solves part of the issue, but the filenames of some of the .git directory files contain 

references. The structure also gives away that the directory is a Git repository, which the 

owner may want to keep secret as well. In order to secure this, the filenames are run 

through a keyed hash algorithm, HMAC, prior to storage on the cloud in Amazon’s S3 

storage.       

To test this new Secure Git implementation, a baseline is first set. This baseline 

consists of testing the popular Git program repository. The tests are similar to Phase One:  

1. A test to compare the speed of the new secure Git implementation compared 

to unencrypted Git.  
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2. A test to compare the size of the repository using the new secure Git 

implementation with the size of the repository using unencrypted Git.  

3. A test to compare size growth of the repository as files are modified and 

committed to the repository.  

4. Lastly, a test to compare JGit speed performance to Git.  

 The results of these tests provide enough data to extrapolate and determine 

roughly the overall performance of encryption using GV2. It is concluded that there are 

no further tests needed, as discussed in the analysis section in Chapter IV for Phase 

Three.  
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IV.  Analysis and Results 

Chapter Overview 

This chapter presents results and analysis of the testing described in the 

methodology section. The methodology testing described three phases:  

1. Secure Git Baseline Phase: baseline current Git encryption implementation 

performance  

2. Git Characterization Phase: characterize Git usage in real-world environments  

3. Secure Git Improvement Phase: develop a new improved Git encryption 

implementation  

 The results and analysis from the first phase of research is presented and the 

results compared to unencrypted Git. Next, the results of the Git Characterization Phase 

are discussed, with analysis of the implications as to the speed and size tradeoffs that are 

acceptable with real-world Git repositories. The third phase results are discussed and 

GV2 is compared to unencrypted Git and also to the Git encryption implementations 

tested in Phase One. GV2 is shown to be capable of providing a useful secure Git 

program for a wide range of audiences, which provides a much needed research 

community development. Finally, the chapter concludes with an overall analysis of the 

whole range of testing.  

Phase One: Secure Git Baseline Phase 

The methodology for this phase of testing is described in the previous chapter. 

This phase consists of testing existing Git-encryption implementations and obtaining a 

baseline of their performance compared to unencrypted Git. The testing analyzes 
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performance in terms of CPU time, size, and functionality. Three distinct real-world Git 

repositories are tested: the Linux Kernel, the Git program source code, and Popping 

program. They are tested in three distinct test scenarios, described in the previous 

chapter. The results show how each test compares in performance between unencrypted 

Git and the two Git encryption implementations: Git-encrypt [43] and Git-crypt [44]. The 

first test analyses the time it takes for all of the files in a repository to be added and 

committed to a new repository. This test measures the time it takes each encryption 

program to use filters to encrypt the files, compared to unencrypted Git, and is run over a 

series of 10 iterations.   

Phase One, Experiment I: Adding all files to the initial repository 

 The first test subject is the Linux Kernel. The performance time for adding all of 

the files to an empty repository, then committing them, then repeating 10 times is shown 

in Figure 18. The difference in speed is due to the filters being used in the Git encryption 

implementations. These encryption filters slow down the staging and commit process by 

a factor of 14 for Git-crypt, and a factor of 38 for Git-encrypt. The Linux Kernel is very 

large compared to most Git repositories, yet this time increase does not make it infeasible 

to use, if security is desired. This time increase is a one-time penalty and is proportional 

to the amount of data added, as the data encryption determines the speed penalty 

compared to unencrypted Git. 
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Figure 18. Phase One, Experiment I: Linux Kernel 

 The exact CPU time averages for each of the three implementations is shown in 

Table 5: 

Table 5. Phase One, Experiment I: Linux Kernel 

Type: Ave CPU Time: Std Dev: 

No Encryption 26.2 seconds 0.95 

Using Git-crypt 380.1 seconds 8.46 

Using Git-encrypt 1003.9 seconds 40.65 
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 The second test subject for Experiment I is the Git Program. The results of 

Experiment I using this program are shown in the Figure 19:  

 

Figure 19. Phase One, Experiment I: Git Program 

 The time increase ratio for Git encryption compared to unencrypted Git for the 

Git Program is roughly the same as with the Linux kernel. The initialization time is 

slowed by a factor of 14 for Git-crypt, and a factor of 37 for Git-encrypt. The Git 

program is a much smaller project in terms of size and number of objects when compared 

to the Linux kernel and the time Experiment I takes reflects that. The averages in time for 

each of the three implementations are shown in the Table 6 : 
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Table 6. Phase One, Experiment I: Git Program 

Type: Ave Time: Std Dev: 

No Encryption 1.47 seconds 0.189 

Using Git-crypt 21.36 seconds 0.456 

Using Git-encrypt 54.04 seconds 0.518 

 

 The final test subject is the Popping Program. The results are shown in Figure 20  

 

Figure 20. Phase One, Experiment I: Popping Program 
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 The performance time for initializing a Git repository increases by a factor of 18 

for Git-crypt, and a factor of 35 for Git-encrypt. These factors are still very similar to the 

previous test subjects.  The exact averages in time for each of the three implementations 

are shown in Table 7: 

Table 7. Phase One, Experiment I: Popping Program 

Type: Ave Time: Std Dev: 

No Encryption 0.085 seconds 0.019 

Using Git-crypt 1.501 seconds 0.506 

Using Git-encrypt 2.980 seconds 0.247 

Phase One, Experiment II: Initial size comparison 

 Experiment II measures the size directly after the process of adding and 

committing all files to the repository, as is done in Experiment I. This size is compared 

between all three Git implementations and then Garbage Collection is run and the sizes 

compared again. In terms of size for the Linux kernel, unencrypted Git yields a repository 

roughly half the size of both encrypted versions. When garbage collection is run, the 

unencrypted Git repository reduced 50%, whereas the size of the repository using the 

encrypted implementations of Git is only reduced by 20%. This is because the Git 

garbage collection (GC) algorithm is unable to efficiently delta-compress and combine 

certain parts of the blob that have similar plaintext but very different ciphertext. The 

graph of results is shown in Figure 21: 
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Figure 21. Phase One, Experiment II: Linux Kernel 

 The size of each implementation directly after the commit and after garbage 

collection is run is shown in the Table 8: 

Table 8. Phase One, Experiment II: Linux Kernel 

Type Size After GC 

No Encryption 287 MB 135 MB 

Using Git-crypt 627 MB 514 MB 

Using Git-encrypt 628 MB 508 MB 
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 For the test of the Git Program, the size of unencrypted Git yields a repository 

80% of the size of both encrypted versions. When garbage collection is run, the 

unencrypted Git repository is reduced by 75%, whereas the size of the repository using 

the encrypted implementations of Git is only reduced by 20%. This is for the same 

reasons as the Linux Kernel – the inability of Git garbage collection to efficiently delta 

compress. The graph is shown in the Figure 22: 

 

Figure 22. Phase One, Experiment II: Git Program 

 The size of each implementation directly after the commit and after garbage 

collection is run is shown in Table 9: 
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Table 9. Phase One, Experiment II: Git Program 

Type Size After GC 

No Encryption 19.2 MB 5.2 MB 

Using Git-crypt 25.2 MB 18.2 MB 

Using Git-encrypt 25.4 MB 18.3 MB 

 

 The Popping program test yields a repository 80% the size of both encrypted 

versions. When garbage collection is run, the unencrypted repository is reduced by 75%, 

whereas the repository sizes when using the encrypted implementations of Git are 

reduced by 20%. This is the same type of reduction as the Git Program. The graph of 

results is shown in Figure 23: 

 

Figure 23. Phase One, Experiment II: Popping Program 
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 The size of each implementation directly after the commit and after garbage 

collection is run is shown in %able 10: 

Table 10. Phase One, Experiment II: Popping Program 

Type Size After GC 

No Encryption 0.916 MB 0.1 MB 

Using Git-crypt 1.16 MB 0.58 MB 

Using Git-encrypt 1.156 MB 0.56 MB 

 

 The size of the repositories using Git encryption implementations is worse than 

with unencrypted Git. The initial size is worse because Git uses zlib to compress data in 

the repository and encrypted data is more random than unencrypted data and cannot be 

compressed at the same level. The size after garbage collection is much worse for the 

encrypted versions and the efficiencies of garbage collection depend on being able to 

delta compress files. As a result, much of the redundant plaintext data must be stored as 

ciphertext, because the ciphertext cannot be compressed. The next experiment takes a 

further look into the size increase performance penalty for Git encryption 

implementations.  

Phase One, Experiment III: Size growth with file modifications 

 The final experiment is performed by editing every data file in the repository by 

appending “hello” to the end of the file and then staging all the modified files by adding 

them and then committing them to the repository. This process of editing the files and 

then committing them is repeated five times.   
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 In the case of the Linux kernel, the growth in size is measured as this process is 

repeated five times. Garbage collection is not run until the fifth iteration. The repositories 

all grow at the same rate of adding 287 MB of data every iteration. This is because there 

is no delta compression due to garbage collection, so every new file snapshot is stored in 

the repository. After the fifth iteration, garbage collection is run and the results of the 

repository after one iteration and after the fifth (with garbage collection) are shown in 

Figure 24: 

 

Figure 24. Phase One, Experiment III: Linux Kernel 

 The results show that the size of the Git repository using Git-crypt grows very fast 

because of failure to be condensed as with Experiment II. The unencrypted and Git-
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encrypt repository grow at a much slower rate because Git-encrypt uses ECB mode, 

allowing for efficient delta compression. The exact sizes are shown in the Table 11: 

Table 11. Phase One, Experiment III: Linux Kernel 

Type Size after fifth iteration garbage collection: 

No Encryption 152 MB 

Using Git-crypt 2577 MB 

Using Git-encrypt 525 MB 

 

 The Git Program is the second test subject. In the same manner as the Linux 

Kernel, the Git program grows linearly for Git-crypt, and does not grow at a high rate for 

the other two implementations. The difference in this test is that the garbage collector is 

run after each iteration. This is to determine if it makes a difference when garbage 

collection is run, or how often. It is found that how often the garbage collection is run 

does not affect the compression performance. The results of this test are shown in Figure 

25: 
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Figure 25. Phase One, Experiment III: Git Program 

 It is easy to see that the size of Git-crypt grows very fast in a linear manner 

relative to the other Git implementations. This result is the same as the Linux Kernel test. 

The exact values for each iteration after garbage collection are shown in the Table 12: 
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Table 12. Phase One, Experiment III: Git Program 

Type 2 GC 3 GC 4 GC 5 GC 

No Encryption 5.8 MB 6.2 MB 6.7 MB 7.2 MB 

Using Git-crypt 34.4 MB 54.6 MB 72.9 MB 91.1 MB 

Using Git-encrypt 18.5 MB 18.8 MB 19.1 MB 19.4 MB 

  

 The Popping Program is the last test subject and performs similarly to the Git 

program. It grows linearly using Git-crypt, and does not significantly grow in size for the 

other two implementations. This test is again run using the garbage collection routine 

after each iteration. The results of this test are shown in Figure 26: 

 

Figure 26. Phase One, Experiment III: Popping Program 
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 Again, this graph reflects the same pattern as the Git Program test, showing that 

the size of Git-crypt grows very fast in a linear manner. This growth is for the same 

reasons as the previous two cases. The exact values after each garbage collection iteration 

are shown in Table 13:  

Table 13. Phase One, Experiment III: Git Program 

Type 2 GC 3 GC 4 GC 5 GC 

Without encryption .266 MB .287 MB .306 MB .329 MB 

Using Git-crypt 1.155 MB 1.731 MB 2.31 MB 2.89 MB 

Using Git-encrypt .584 MB .607 MB .631 MB .653 MB 

 

 The three experiments are summarized in Table 14. This table shows the baseline 

performance of Git without encryption is shown as both a normalized baseline value of 1 

and also the actual value resulting from the corresponding test. Each of the two Git 

encryption methods are shown in the corresponding columns for performance comparison 

as a ratio for each of the experiments and test sizes: 
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Table 14. Phase One: Summary of Experiments 

Type of Test  

(size category) 

No Encryption 

(baseline) / Actual 

Git-Crypt Git-Encrypt 

Speed ratio of 

repository init  (Small) 

1.00 / 0.085 seconds 17.66 35.06 

(Medium) 1.00 / 1.47 seconds 14.53 36.76 

(Large) 1.00 / 26.2 seconds 14.51 38.32 

Size ratio of initial 

repository (Small) 

1.00 / 0.1 MB 5.8 5.6 

(Medium) 1.00 / 5.2 MB 3.5 3.52 

(Large) 1.00 / 135 MB  3.81 3.76 

Size ratio of growth 

with file changes  after 

5 iterations (Small) 

1.00 / 0.329 MB 8.78 1.98 

(Medium) 1.00 / 7.2 MB 12.65 2.69 

(Large) 1.00 / 152 MB 16.95 3.45 

 

 Phase One examined two existing methods for securing Git repositories, Git-

encrypt and Git-crypt, and compared their performance relative to unencrypted Git. They 

are tested side-by-side to unencrypted Git through a series of three tests. These tests 

examine the performance impact in terms of time, size, size growth with file 

modifications, and functionality of initializing and populating a repository, compressing a 

repository through garbage collection, modifying and then committing files to a 

repository. From the results in the previous section, the two existing Git-encryption 

implementations are shown to provide full functionality for these tasks. They increase the 

time to execute Git functions with the time increase ranging from a factor of 14 to a 

factor of 38, depending on the scenario. This is a constant time increase and attributed to 

the time it takes for files to be encrypted.   
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 The size increase for the Git-encryption implementations in adding files to the 

repository is larger than unencrypted Git by a factor ranging from 3 to 9. This size 

increase occurred because Git compresses data objects in the repository with zlib. The 

randomness of the encrypted data does not allow for as much compression as with 

unencrypted data. These initial encrypted repositories also suffer from inefficient delta 

compression, causing the percentage decrease in size after Git garbage collection to be at 

a worse performance than with unencrypted Git.   

 The size growth of encrypted Git implementations compared to unencrypted Git 

is tested by editing every file in the repository and then adding and then committing the 

repository files. This process is repeated five time. Garbage collection is run after the 

fifth iteration for the Linux kernel and after each iteration for the other two test subjects. 

The size increase is similar for unencrypted Git and Git-encrypt and the size increase is 

large and linear for Git-crypt, proportional to the working set of files. The reason for this 

is that in Git-encrypt with ECB mode, if a few bytes are altered, then the ciphertext 

alteration is limited to the blocks that correspond to those bytes. In Git-crypt, if even just 

one byte is altered, then the entire ciphertext of that file is changed. As discussed in 

section three, the default implementation of Git-encrypt is not cryptographically secure, 

however, it is more secure than unencrypted Git and provides an interesting middle-

ground test case of higher performance for a reduced level of security. Git-crypt is as 

cryptographically secure as the underlying AES and hash implementations it uses and 

depends on the IV being unique as well as a pseudorandom hash function.   
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 A system is needed to provide a secure implementation for Git in order that the 

benefits of Git can be used in sensitive and restricted projects stored in unsecure areas, 

such as a public cloud. Currently, there is no efficient and tested method for this to be 

accomplished and to keep the git repository confidential, the entire repository must be 

encrypted and transferred with every update to the repository.  

 These tests represent the worst-case scenario in that every file in the repository is 

added and then edited. Even though these tests represent the worst case scenario, Git-

crypt has an alarmingly high growth rate of the repository. This causes the size of the 

repository to quickly get out of hand for many software development environments. Git-

encrypt provides better size performance, but at a high cost to security. GV2 reduces this 

growth rate to provide for better usability.   

Phase Two: Git Characterization Phase 

 The methodology for this phase of testing is described in the previous chapter. 

The Git Characterization Phase consists of characterizing typical real-world Git usage 

habits in order to provide realistic and accurate tests to show that Git encryption works 

under realistic scenarios. The research of this phase is used to provide accurate 

information with which decisions can be made as to how well an encrypted Git 

implementation must perform in terms of size and speed compared to unencrypted Git. 

This phase is started with the intent to provide an emulator of realistic Git usage to use to 

test the Git encryption implementations and see how they perform under realistic 

situations ranging over multiple years. The reality shows, however, that the usage habits 

for any popular repository contains too many commits and pushes to be efficient under 
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the previous Git encryption implementations. GV2 performs so closely to unencrypted 

Git, that the emulation is not needed. To show the conclusions, the mined real-world Git 

projects are shown in Table 15 alongside their language, commits, and lines of code 

additions and subtractions per commit:   

Table 15. Random Repository Commit Statistics 

Name  Language Commits/Week Added/Commit 

(Lines of Code) 

Removed/Commit 

(Lines of Code) 

Devnull PHP 14.6 501.2 (278.4) 

ComputerNetworks Python 23.5 50.9 (28.0) 

Restfiddle Java 22.0 215.3 (64.21) 

Intouch2 JavaScript 25.75 459.2 (150.4) 

CoolProp C++ 59.2 150.9 (90.3) 

EZ Publish PHP 39.36 116.1 (56.9) 

1PICNIC Python 42.8 14.5 (6.65) 

TetraWord Java 23.4 2149.5 (41.5) 

Syra JavaScript 14.7 261.0 (46.7) 

FF2-Alpha C++ 19.36 103.5 (43.2) 

Openvault PHP 24.0 33.8 (34.3) 

Tendenci Python 19.5 2707.9 (1417.2) 

Eucalyptus Java 38.4 291.2 (171.9) 

Boost32Boost JavaScript 22.1 45.1 (30.9) 

Nme C++ 9.4 566.7 (557.1) 
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 The results of the random repository analysis are visually shown in Figure 27. The 

figure shows the number of commits to each repository per week based on language. The 

boxes represent the 95% confidence intervals and the thick lines in the boxes show the 

average of the commit data.  

 

Figure 27. Random Repository Commit Average Data 

 The commit data is statistically similar within the 95% confidence interval that 

that habits for commits per week are not influenced by language of the project. The 

trending repository projects are shown in Table 16 alongside their language, commits, 

and lines of code additions and subtractions per commit. These trending repositories are 
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more accurate representations of what types of projects a company or Government 

organization would be working with: 

Table 16. Trending Repository Commit Statistics 

Name  Language Commits/Week Added/Commit 

(Lines of Code) 

Removed/Commit 

(Lines of Code) 

Typecho PHP 40.1 169.9 173.1 

PHPMailer PHP 6.17 14.9 13.3 

Google-api-

php-client 

PHP 17.3 187.2 92.1 

Physical-web Java 65.75 47.9 27.7 

Iosched Java 4.5 1273.5 583.3 

Spring-

framework 

Java 40.0 178.5 127.9 

Fetch JavaScript 18.25 16.5 5.2 

React JavaScript 40.7 44.8 35.7 

Meteor JavaScript 123.3 120.0 105.4 

Reddit Python 24.7 43.7 18.1 

iPython Python 91.2 72.0 60.0 

Tornado Python 11.8 26.7 20.8 

Mongo C++ 78.6 670.3 284.5 

Hhvm C++ 110.5 527.2 429.0 

Atom-Shell C++ 32.0 60.83 43.1 

 

 The results of the trending repository analysis are visually shown in Figure 28 

below. Figure 28 shows the number of commits to a repository per week based on 
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language. The boxes represent the 95% confidence intervals and the thick lines in the 

boxes show the average of the commit data. 

 

Figure 28. Trending Repository Commit Average Data 

 The commit data is statistically similar within the 95% confidence intervals to 

conclude that habits for commits per week are not influenced by language of the project. 

The average size of lines of code added per commit is shown in Figure 29:  
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Figure 29. Trending Repository Line of Code Average Addition / Commit 

 Both C++ and Java contain larger code additions than JavaScript, PHP, and 

Python. This is attributable to C++ and Java having a higher level of verbosity compared 

to JavaScript, PHP, and Python. Similar statistics are expected for the subtractions, 

shown in Figure 30:  
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Figure 30. Trending Repository Line of Code Average Removal / Commit 

 As seen in the additions, both C++ and Java contain larger code removals than 

JavaScript, PHP, and Python. Again, this is attributable to C++ and Java having a higher 

level of verbosity compared to JavaScript, PHP, and Python..  

 If an emulator for Git were needed, this data could be used, but this data provides 

enough evidence to support that the linear growth of the size of Git-crypt occurring 

during code edits and commits will not suffice to support efficient secure Git encryption. 

This is because the Git Garbage Collection routine is run after encryption. Phase Three 

develops an improved Git encryption method, GV2, that encrypts data after Git Garbage 
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Collection and negates the need for an emulator to test, as the size growth and time 

expense are minimal penalties and predictable constants.    

Phase Three: Secure Git Improvement Phase 

 This final phase of analysis consists of reviewing the results of the Secure Git 

Improvement Phase. The methodology for this stage is described in Chapter III.  GV2 is 

developed by the author of this thesis and performs Git Garbage Collection prior to 

encryption. GV2 uses JGit as a base Git software and utilizes other third party libraries to 

aid in encryption and deployment to third-party Amazon S3 storage. GV2 addresses the 

performance shortfalls of the previously analyzed existing Git encryption 

implementations – most notably the performance shortfall of the linear repository size 

growth of Git-crypt. By carefully integrating these libraries and applying new code to 

JGit, GV2 is able to provide a usable secure Git implementation with full functionality 

and performance similar to unencrypted Git.  

 The testing performed on GV2 is in similar nature to Phase One of this research 

and is tested and recorded in terms of CPU time, size, and functionality. The performance 

compared to previous Git encryption implementations is better with regards to all three 

key performance metrics. As stated, the most critical performance shortfall addressed is 

the linear size growth of Git-crypt, when files are modified, the changes added to the 

repository, and then the changes are committed. This size growth causes Git-crypt to be 

unusable during typical Git usage. Because the reason for this growth is caused by the Git 

filters encrypting data before it is compressed and garbage collected, a total redesign of 

Git-crypt is necessary to fix this issue. This is one of the main decision factors to develop 
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an improved version, rather than continue testing and/or modifying the previous Git-

crypt.  

 GV2 is briefly described in Chapter III and provides improved security standards 

from Git-crypt: the encryption methods used provide the same authenticated encryption 

but the .git directory files are also encrypted. GV2 uses GCM with AES-CTR mode 

encryption.    

 The test subjects and methodology process for comparison of unencrypted JGit to 

GV2 is identical to Phase One. The Git program is tested first as it represents a typical 

repository, based on the Phase Two study (the Popping program and Linux Kernel are on 

the extreme ends of the size spectrum). The first test is a speed test and this test is run 

over a series of 10 iterations using no encryption, the JGit built in DES encryption option, 

and GV2. The results show that the time increase of GV2 compared with unencrypted 

JGit is minimal. The majority of the time for a push to Amazon S3 is in the network 

transmission and propagation delay. The average time increase from unencrypted JGit to 

GV2 for adding all of the files of the Git program, committing them to a new repository, 

and then pushing them to S3 is 0.258 seconds, or an increase of 2.4%, over the average of 

the 10 tests trials. This test is run over a series of 10 iterations to provide consistency of 

results. DES encryption has slightly better performance, but no integrity protection and 

weaker encryption properties. The time results are shown in Figure 31: 
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Figure 31. JGit Git Program Push Time Comparison 

 

 The results in the figure above show staggering support for the case to use GV2. 

The time increase for an encrypted push to Amazon S3 is minimal and negligible. The 

speed is decisively better than that of even Git-crypt. The reason for this is that Git-crypt 

encrypts every individual file before adding it to the repository. This requires encryption 

setup time and overhead for many files. GV2 first adds and commits all of the files and 

then runs GCM encryption in a streaming manner on the packfile produced from garbage 
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collection, prior pushing the repository to Amazon S3 storage. The order in which the 

encryption is done drastically lowers the overhead required.  

 The second test measures the size of the GV2 encrypted Git repository compared 

to unencrypted Git. Again, this size increase is also minimal for GV2. This again is 

attributed to the order in which the encryption happens. This implementation takes 

advantage of Git’s intended design of being fast and efficient [1]; most notably Git 

garbage collection. Git garbage collection results in a data file, called the packfile, and an 

index file that contains the information necessary to decompress the packfile. By 

encrypting in this manner, the only size increase is in the encryption overhead, and also 

the padding, if it is used.  

 This linear size growth from Git-crypt testing does not exist in GV2. This is 

because the data can be compressed locally by Git garbage collection when it is 

unencrypted, and that is the process that this implementation uses. Since additional data 

added to the repository is either encrypted or decrypted after garbage collection, there is 

not an excess of extra data from different versions, as is the case with Git-crypt. Thus 

subsequent versions of repositories grow and shrink in the same manner that an 

unencrypted Git repository does. The only increase in size is the added overhead for 

encryption, as stated earlier.       

 The previous discussion of the size performance of GV2 is theoretical. In order to 

demonstrate it, the same size test from Phase One of this research is used. This test 

process consists of initializing an empty repository, adding all of the Git files to the 

repository, committing them, and then pushing this data to Amazon S3 storage. This is 
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done using unencrypted Git as well GV2. Since the data overhead for encryption is 

consistent, the test is done with one program, again the Git program. The contents of the 

.git directory files are encrypted, unlike in Git-crypt. This and the size comparison are 

shown in the Figures 32 and Figure 33: 

 

Figure 32. Git Encrypted and Unencrypted Config File Comparison 

 

Figure 33. Git Encrypted and Unencrypted Structure Size Comparison 

 Figure 32 shows the contents of an encrypted and unencrypted Git config file. 

Figure 33 shows the encrypted and unencrypted contents of Git structure of the identical 
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Git repositories. Note that the sizes of the encrypted files are exactly 16 bytes larger than 

the sizes of the unencrypted files. This is the authentication tag. If padding is included, 

there would be additional size and the encrypted files would be multiples of 16 bytes, but 

for this purpose seeing the exact 16 byte size increase is important, so padding is not 

implemented in this portion of the analysis. The entire contents, including filenames can 

be encrypted as well, but then there would just be a blob of data, which makes analysis 

impossible because one would need to know the unencrypted Git structure in order to 

navigate the encrypted. This is because the names are encrypted using HMAC, which is a 

one-way function. Since every .git directory is unique, one would have to guess it along 

with the filenames and then HMAC, which is time consuming. Even so, if an attacker 

without access knows that the directory is a Git directory, they still have no ability to 

glean any bits of information about the data. The attacker also cannot modify data 

without alerting the integrity check. An example ‘scrambled blob’ directory is shown in 

Figure 34: 

 

Figure 34. Scrambled Blob .git Directory 
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 Ensuring the 16 byte data increase for unencrypted Git compared to GV2 is 

consistent, the entire contents of each Amazon S3 storage bucket is recorded and 

analyzed. Amazon S3 stores all files as key-value pairs and every encrypted file is 

exactly 16 bytes larger than the unencrypted version. This is due to the data overhead of 

GCM in having an authentication tag. The largest of the files stored is the packfile, in 

which the Git content data objects are stored. The packfile is generated during Git 

Garbage Collection and the size growth of this binary file is the key to efficient Git 

encryption. A closer look at the packfile is shown in Figure 35:   

 

Figure 35. Encrypted and Unencrypted Packfile Comparison  

 These packfiles are both roughly 5 MB in size. As expected from the previous 

results, the encrypted packfile is just slightly larger than the unencrypted, because of the 

appended 16 byte authentication tag. The filename, unencrypted size, encrypted size, and 

difference for all of the files stored on Amazon S3 for this particular Git repository are 

summarized in Table 17 (note that not all of the files shown in a potential Git repository 

are included, just what is needed for this particular repository to be stored on Amazon 

S3):  
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Table 17. GV2 Git Program Size Comparison 

File: Unencrypted Size: Encrypted Size: Difference % Difference 

Head 23 39 16 
41% 

Config 36 52 16 
31% 

Refs 59 75 16 
21% 

Master Ref 41 57 16 
28% 

Packs Info 53 69 16 
23% 

Index File 76364 76380 16 
0.02% 

Packfile 5286376 5286392 16 
0.0003% 

Total 5362952 5363064 112 
0.002% 

 

 The total size increase is made up of solely overhead: 112 bytes in total or 0.002% 

increase from unencrypted Git. This equates to a 0.002% size increase. Additionally, 

because garbage collection is run prior to encryption, changes do not grow linearly, the 

size increase of encrypted repositories maintains a very small overhead of 16 bytes per 

file. In addition to this, the initialization vectors are also stored on Amazon S3, as well as 

some other management data. JetS3t library handles this data overhead and maintains it. 

Other than the IVs, which are 16 bytes each, this is data that is standard to Amazon S3 

storage and is also less than a percent of overhead.     

  There may still be concerns with using JGit in the terms of speed and 

functionality. C and C++ are generally faster than interpreted languages, such as Java 

[63-65]. Because Java is converted to bytecode, which is run on the Java Virtual Machine 
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running on the native operating system, it is inherently slower than native C or C++, 

although the performance of Java is steadily improving. As with every decision, however, 

performance tradeoffs should be analyzed prior to making a final decision. JGit provides 

the same and even extended functionality when compared to Git [48]. JGit also provides 

several different layers of interaction with a Git repository, from command line to within 

a program [66]. Most importantly for this research, JGit provides a base program to be 

modified as specific points within a Git repository to produce GV2. GV2 includes 

additional libraries and code that is added to stich them together and increase 

functionality in the right place in JGit. There are currently no options for hooking into 

traditional Git to encrypt data after garbage collection. All of the data modifications for 

traditional Git exist in the form of a filter, as the data is first added to the repository. Still, 

it is beneficial to analyze the speed differences between JGit and Git as it relates to this 

research.  

 In order to determine the performance differences between JGit and Git, as 

relating to this research, the test methodology of Phase One, Experiment I is used with 

both JGit and Git. Recall that this test consists of initializing an empty repository, adding 

all files from a specific program to the repository, and then committing those files to the 

repository. This process is repeated a total of 10 iterations for an ample sample size to 

draw statistical conclusions.   

 The results are written in Table 18 and displayed in the Figures 36-38: 
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Table 18. Git and JGit Adding Initial Files Time Comparison 

Program: Ave CPU Time:(Std Dev) 

 Git: JGit Difference: (% increase) 

Linux Kernel 26.2 seconds (0.95) 47.1 seconds (1.56) 20.9 seconds (80%) 

Git Program 1.47 seconds (0.189) 3.02 seconds (0.09) 1.55 seconds (105%) 

Popping 

Program 0.085 seconds (0.019) 1.066 (0.04) 0.981 seconds (1154%) 

 

 

 

Figure 36. Linux Kernel Git and JGit Adding Initial Files Time Comparison 
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Figure 37. Git Program Git and JGit Adding Initial Files Time Comparison 

 

Figure 38. Popping Program Git and JGit Adding Initial Files Time Comparison 
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 JGit takes longer to perform the functions of adding and committing files to a 

repository when compared to Git. While the percentage increase is high, it is a constant 

penalty and the time for even a project as large as the Linux Kernel is still less than a 

minute, which is ideal in most software development environment scenarios. Because 

JGit is built to emulate Git using the Java language, it operates on traditional Git 

repository structures [48]. This means that the commands can be intertwined. Thus, if 

working entirely from the command line, or a program that has interaction with both Git 

and JGit programs, one can use traditional Git to add and commit files and avoid the time 

increase in the performance of JGit. When time to encrypt and push to a remote 

repository in a secure manner, one can use GV2 via the command line interface.   

 This section presented the results and analysis of Phase Three of this research. 

Phase Three is built upon the shortcomings of Git encryption implementations that are 

base lined in Phase One of this research. The design of GV2 takes into account the 

typical usage of Git, which is researched in Phase Two. Finally, this section presents a 

new and secure way of encrypting a Git repository by improving upon the open source 

Java version of Git, JGit. This implementation, named GV2, provides high confidentiality 

and integrity protection with full functionality and only minimal performance 

degradation. It does this by adding external libraries and adding Java code functionality 

into JGit to use GCM AES-CTR mode encryption for confidentiality, processing an 

authentication code check to ensure integrity protection, and do this all after Git garbage 

collection in order to manage Git repository size. 
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 GV2 is a vast improvement upon the previously analyzed open source Git 

encryption implementations: Git-crypt [44] and Git-encrypt [43]. The security 

qualifications of GV2 and Git-crypt of similar and both in line with the cryptography 

goals of this thesis research. Performance-wise, GV2 is superior to Git-crypt. Table 19 

and Table 20 summarize the performance improvement of GV2 compared to Git-crypt, 

with the baseline of unencrypted Git, in terms of speed adding initial files to a repository 

and size of the repository when encrypted: 

Table 19. GV2 Speed Performance Compared to Git-crypt In Adding Initial Files 

Program Ave CPU Time:(Std Dev) 

Using Git: Git: JGit Git-crypt: 

Linux Kernel 2.62 seconds (0.95) 47.1 seconds (1.56) 380.1 seconds (8.46) 

Git Program 1.47 seconds (0.189) 3.02 seconds (0.09) 21.36 seconds (0.456) 

Popping 

Program 0.085 seconds (0.019) 1.066 (0.04) 1.501 seconds (0.506) 

 

Table 20. GV2 Encrypted Repository Size Compared to Git-crypt 

 

Program Repository Size After Garbage Collection: 

Using Git: Git: JGit Git-crypt: 

Git Program 5.2 MB 5.2 MB + 112 Bytes 18.2 MB 

Git Program after 5 

iterations of file 

modifications: 7.2 MB 7.2 MB + 112 Bytes 91.1 MB 

Performance: Baseline Less than 1% larger 1265% larger 
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter reviews the research objectives presented in Chapter I and 

determines if they have been met through the testing methodology and analysis of results 

of this research. The chapter continues to address the significance of this research to 

various interested communities. Following this statement, the chapter makes a 

recommendation for action. Finally, this chapter concludes with recommendations for 

further research that can be done in this area to better improve using Git in a secure 

manner.  

Conclusions of Research 

Recall that the objective of this research is to develop and demonstrate a 

modification to Git allowing it to serve as a fully functional and secure distributed 

version control system for sensitive projects. The security goals of this research are to 

apply confidentiality protection, defined as read-only access protection, and integrity 

protection, defined as protection against malicious altering of data, to Git repositories. 

These security goal must be met in a fully functional manner, meaning that all of the Git 

commands work the same on the secure Git repository as they would a traditional 

unencrypted Git repository.    

This research clearly demonstrates that GV2, developed in Phase Three of this 

research, overcomes the performance shortfalls of existing Git encryption 

implementations by encrypting at the lower transport level after Git garbage collection is 
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run. GV2 accomplishes the security goals described above in a fully functional manner 

with hardly any negative performance effects compared to unencrypted Git.    

Significance of Research 

As stated in Chapter I, distributed version control systems, particularly Git, have 

been rapidly increasing in popularity among software developers in recent years [4]. The 

problem exists when these organizations have sensitive data that they want to use with 

Git in an unsecure environment. To secure an environment, especially over the internet, 

involves high levels of cost. As the name implies, GV2 provides Git with a Virtual Vault 

in a remote location, such as on an Amazon Cloud, using their Amazon S3 storage 

service. GV2 provides new documented functionality and performance to the research 

community. This is new research that has high interest from the Department of Defense 

and other organizations who want to run applications using a third party cloud service 

provider but also want to maintain confidentiality and integrity of their application data. 

In the future, many traditional applications will be modified to support this same type of 

security in an unsecure environment in an efficient manner that is transparent to the user.  

Recommendations for Action 

This research suggests that GV2, developed using JGit, is used by those who 

desire to use Git in an efficient, transparent, and secure manner over a third-party cloud 

provider. This research specifically implements Git encryption using Amazon S3 storage 

cloud services, as Amazon provides high performance at affordable prices. This 

implementation can be modified to work with other preferred providers, if necessary. 
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While users can create and store their own keys, it is recommended that they use a Public 

Key Infrastructure (PKI) system for secure transport of keys.   

Recommendations for Future Research 

 This research presents significant improvements over previous Git encryption 

implementations that use Git clean and smudge filters. The performance of GV2, 

developed by the author of this thesis, is nearly identical to unencrypted Git, while 

maintaining high confidentiality and integrity protection via GCM AES-128 counter 

mode encryption. This research requires the user work with JGit, rather than traditional 

Git, which may not be ideal for some. Future research would be to implement the same 

encryption system at the transport layer in the traditional Git program. Additionally, some 

may require that the Git directory structure is not known and prefer to have a blob of data 

on Amazon S3. Further research could look into the problem described in Chapter IV of 

other users not being able to calculate the HMAC references because of not knowing the 

names of the remote Git files and directory structure. Other relevant research in this area 

includes using Git as a secure file system. This would allow organizations to securely 

store files and track changes in an inexpensive and high performance cloud computing 

environment. Lastly, further research into other secure cloud applications will further the 

independence on localized systems and allow for increased productivity at the right cost.   

Summary 

In an effort to allow for users to work with sensitive data with Git repositories, 

and keep the data safe on an unsecure cloud, this research investigated potential Git 

encryption implementations. It consisted of three phases:  
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1. Phase One: baseline current Git encryption performance 

2. Phase Two: Characterizing Git repository usage. 

3. Phase Three: Improving upon Git by developing a new secure method. 

The third phase is successful in developing GV2 and demonstrating it as a secure 

Git implementation that can be adopted and used by masses. This is demonstrated by 

sound methodology and analysis of the results. Finally this research concludes with 

recommendations for action and future research.     

      

 



 

105 

Bibliography 

References 

[1] Chacon, S., & Hamano, J. C. (2009). Pro Git. Springer.  

[2] Chacon, S. (2014). Git-SCM. Retrieved from http://git-scm.com. 

[3] Chacon, S. (2014) Git Community Book. Retrieved from 

http://schacon.github.io/gitbook. 

[4] Herbsleb, J. D. (2007). Global software engineering: The future of socio-technical 

coordination. Paper presented at the 2007 Future of Software Engineering, 188-198.  

[5] Asay, M. (2014). Git is giving Subversion a run for its money: What took so long? 

Retrieved from http://readwrite.com/2014/01/21/git-subversion-developers. 

[6] (2014). Compare Repositories. Retrieved from 

https://www.openhub.net/repositories/compare.  

[7] Schaller, R. (1997). Moore's law: Past, present and future. Spectrum, IEEE, 34(6), 52-

59.   

[8] Bell, G. (2008). Bell's law for the birth and death of computer classes: A theory of the 

computer's evolution. Solid-State Circuits Society Newsletter, IEEE, 13(4), 8-19.  



 

106 

[9] Kurose, J. F., & Ross, K. W. (2001). Computer networking: A top-down approach 

featuring the internet. Addison-Wesley Reading.  

[10] Arutyunov, V. (2012). Cloud computing: Its history of development, modern state, 

and future considerations. Scientific and Technical Information Processing, 39(3), 173-

178.   

[11] Mell, P., & Grance, T. (2009). The NIST definition of cloud computing. National 

Institute of Standards and Technology, 53(6), 50.  

[12] (2014). Definition of Cloud Computing. Retrieved from 

http://www.dictionary.reference.com. 

[13] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A. (2011). Cloud 

computing—The business perspective. Decision Support Systems, 51(1), 176-189.  

[14] Han, Y. (2011). Cloud computing: Case studies and total cost of ownership. 

Information Technology and Libraries, 30(4), 198-206.  

[15] Bacon, J., Eyers, D., Pasquier, T. M., Singh, J., Papagiannis, I., & Pietzuch, P. 

(2014). Information flow control for secure cloud computing. Network and Service 

Management, IEEE Transactions on, 11(1), 76-89.  

[16] Zhang, H., Jiang, G., Yoshihira, K., & Chen, H. (2014). Proactive Workload 

Management in Hybrid Cloud Computing. Network and Service Management, IEEE 

Transactions on, 11(1), 90-100.  



 

107 

[17] Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel, E. H., & 

Steere, D. C. (1990). Coda: A highly available file system for a distributed workstation 

environment. Computers, IEEE Transactions on, 39(4), 447-459.  

[18]  Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A., Satyanarayanan, M., 

Sidebotham, R. N., & West, M. J. (1988). Scale and performance in a distributed file 

system. ACM Transactions on Computer Systems (TOCS), 6(1), 51-81. 

[19] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010, May). The hadoop 

distributed file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 

26th Symposium on (pp. 1-10). IEEE. 

[20] Ghemawat, S., Gobioff, H., & Leung, S. T. (2003, October). The Google file system. 

In ACM SIGOPS operating systems review (Vol. 37, No. 5, pp. 29-43). ACM. 

[21] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., & 

Gruber, R. E. (2008). Bigtable: A distributed storage system for structured data. ACM 

Transactions on Computer Systems (TOCS), 26(2), 4. 

[22] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large 

clusters. Communications of the ACM, 51(1), 107-113. 

[23]. Carlsson, E. (2013). Mining Git Repositories: An introduction to repository mining 

(Bachelor's Thesis). Linnaeus University, Kalmar, Sweden. Retrieved from 

http://www.diva-portal.org/smash/get/diva2:638844/FULLTEXT01.pdf 



 

108 

[24] Feng, D. G., Zhang, M., Zhang, Y., & Xu, Z. (2011). Study on cloud computing 

security. Journal of Software, 22(1), 71-83. 

[25] Bisong, A., & Rahman, M. (2011). An overview of the security concerns in 

enterprise cloud computing. arXiv preprint arXiv:1101.5613. 

[26] Paar, C., & Pelzl, J. (2009). Understanding cryptography: a textbook for students 

and practitioners. Springer Science & Business Media. 

[27] Schneier, B. (2007). Applied cryptography: protocols, algorithms, and source code 

in C. John Wiley & Sons. 

[28] Boneh, D. (2014). Introduction to Cryptography Class. Retrieved from 

https://class.coursera.org/crypto-preview/lecture. 

[29] Rogaway, P., & Shrimpton, T. (2006). A provable-security treatment of the key-

wrap problem. In Advances in Cryptology-EUROCRYPT 2006 (pp. 373-390). Springer 

Berlin Heidelberg. 

[30] Harkins, D. (2008). RFC-5297 Synthetic Initialization Vector (SIV) Authenticated 

Encryption Using the Advanced Encryption Standard (AES). Network Working Group. 

[31] McGrew, D., & Viega, J. (2004). The Galois/counter mode of operation (GCM). 

Submission to NIST. http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-

spec.pdf. 



 

109 

[32] Ruparelia, N. B. (2010). The history of version control. ACM SIGSOFT Software 

Engineering Notes, 35(1), 5-9. 

[33] De Alwis, B., & Sillito, J. (2009, May). Why are software projects moving from 

centralized to decentralized version control systems? Cooperative and Human Aspects on 

Software Engineering, 2009. CHASE'09. ICSE Workshop on (pp. 36-39). IEEE. 

[34] Spinellis, D. (2012). Git. Software, IEEE, 29(3), 100-101. 

[35] Wakchaure, S. S., & Arora, S. K. (2012). Implementation of a Secure Distributed 

Storage System. (Unpublished Graduate Project). George Mason University, Fairfax, VA. 

Retrieved from 

http://ece.gmu.edu/coursewebpages/ECE/ECE646/F12/project/F12_specifications/Snehil

_Simrit.pdf 

[36] Wang, C., Wang, Q., Ren, K., Cao, N., & Lou, W. (2012). Toward secure and 

dependable storage services in cloud computing. Services Computing, IEEE Transactions 

on, 5(2), 220-232. 

[37] Varadharajan, V., & Tupakula, U. (2014). Security as a service model for cloud 

environment. Network and Service Management, IEEE Transactions on, 11(1), 60-75. 

[38] Lührig, J. P. File synchronization using git-annex assistant. University of Lubeck, 

Lubeck, Germany. Retrieved from http://media.itm.uni-luebeck.de/teaching/ws2013/sem-

cloud-computing/File_synchronization_using_git-annex_assistant.pdf 



 

110 

[39] (2014). Git Annex. Retrieved from http://Git-annex.branchable.com.  

[40] Klingelhuber, P., & Mayrhofer, R. (2011, December). Private notes: encrypted XML 

notes synchronization and sharing with untrusted web services. Proceedings of the 13th 

International Conference on Information Integration and Web-based Applications and 

Services (pp. 254-261). ACM. 

[41] (2014). Git transparent encryption. Retrieved from 

http://syncom.appspot.com/papers/git_encryption.txt.  

[42] Robinson, M., Niu, J., & Shonle, M. (2011, November). GitBAC: Flexible access 

control for non-modular concerns. In Proceedings of the 2011 26th IEEE/ACM 

International Conference on Automated Software Engineering (pp. 500-503). IEEE 

Computer Society. 

[43] Gilk, W. (2014). Git-encrypt. Retrieved from https://Github.com/shadowhand/Git-

encrypt  

[44] Ayer, A. (2014). Git-crypt. Retrieved from https://Github.com/AGWA/Git-crypt 

[45] (2014). Git-remote-gcrypt. Retrieved from https://github.com/joeyh/git-remote-

gcrypt.  

[46] Schneier, B. (2014). Insecurities in Linux /dev/random. Retrieved from 

https://www.schneier.com/blog/archives/2013/10/insecurities_in.html.  



 

111 

[47] Hamano, J. (2014) RE: Transparently encrypt repository contents with GPG. 

Retrieved from http://article.gmane.org/gmane.comp.version-control.git/113221  

[48] (2014). JGit Project. Retrieved from http://www.eclipse.org/jgit. 

[49] (2014). libgit2. Retrieved from https://libgit2.github.com. 

[50] Weber, S., Meyer, B., Nordio, M., & Estler, H. C. (2012). Automatic Version 

Control System for Distributed Software Development (Doctoral dissertation, 

Eidgenössische Technische Hochschule Zürich, Department of Computer Science, 

Software Engineering Group). 

[51] Hattori, L. P., & Lanza, M. (2008, September). On the nature of commits. In 

Automated Software Engineering-Workshops, 2008. ASE Workshops 2008. 23rd 

IEEE/ACM International Conference on (pp. 63-71). IEEE. 

[52] Alali, A., Kagdi, H., & Maletic, J. I. (2008, June). What's a typical commit? A 

characterization of open source software repositories. In Program Comprehension, 2008. 

ICPC 2008. The 16th IEEE International Conference on(pp. 182-191). IEEE. 

[53] Kolassa, C., Riehle, D., & Salim, M. A. (2013, August). The empirical commit 

frequency distribution of open source projects. In Proceedings of the 9th International 

Symposium on Open Collaboration (p. 18). ACM. 



 

112 

[54] Kolassa, C., Riehle, D., & Salim, M. A. (2013). A model of the commit size 

distribution of open source. In SOFSEM 2013: Theory and Practice of Computer 

Science (pp. 52-66). Springer Berlin Heidelberg. 

[55] Hindle, A., German, D. M., & Holt, R. (2008, May). What do large commits tell us?: 

a taxonomical study of large commits. In Proceedings of the 2008 international working 

conference on Mining software repositories (pp. 99-108). ACM. 

[56] Mockus, A. (2009, May). Amassing and indexing a large sample of version control 

systems: Towards the census of public source code history. In Mining Software 

Repositories, 2009. MSR'09. 6th IEEE International Working Conference on (pp. 11-20). 

IEEE. 

[57] Gousios, G., & Spinellis, D. (2012, June). GHTorrent: Github's data from a firehose. 

In Mining Software Repositories (MSR), 2012 9th IEEE Working Conference on (pp. 12-

21). IEEE. 

[58] (2014). GitHub Archive. Retrieved from http://www.githubarchive.org. 

[59] (2014). GitHub API Overview. Retrieved from https://developer.github.com/v3. 

[60] Schneider, A. (2015). Popping. Retrieved from 

https://github.com/schneiderandre/popping.  

[61] (2014). Google BigQuery. Retrieved from http://cloud.google.com/bigquery. 



 

113 

[62] (2014). CURL. Retrieved from http://curl.haxx.se. 

[63] Gherardi, L., Brugali, D., & Comotti, D. (2012). A java vs. c++ performance 

evaluation: a 3d modeling benchmark. In Simulation, Modeling, and Programming for 

Autonomous Robots (pp. 161-172). Springer Berlin Heidelberg. 

[64] Georges, A., Buytaert, D., & Eeckhout, L. (2007). Statistically rigorous java 

performance evaluation. ACM SIGPLAN Notices, 42(10), 57-76. 

[65] Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley, K. S., 

Bentzur, R., & Wiedermann, B. (2006, October). The DaCapo benchmarks: Java 

benchmarking development and analysis. In ACM SIGPLAN Notices (Vol. 41, No. 10, 

pp. 169-190). ACM. 

[66] Blewitt, A. (2013). Embedding JGit. Retrieved from 

http://alblue.bandlem.com/2013/11/embedding-jgit.html.  

[67] (2014). JetS3t. Retrieved from http://www.jets3t.org.  

[68] (2014). Bouncy Castle. Retrieved from https://www.bouncycastle.org/java.html.  

[69] (2014). Oracle Java Documentation of SecureRandom Class. Retrieved from 

https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html.  

[70] FIPS, P. (2001). 140-2: Security requirements for cryptographic modules. National 

Institute of Standards and Technology, 15. 



 

114 

[71] Eastlake, D. E., Crocker, S. D., & Schiller, J. E. F. F. R. E. Y. (1994). RFC–1750 

Randomness Recommendations for Security. Network Working Group. 

[72] (2014). The Git Guys: The .git Directory Explained. Retrieved from 

http://www.gitguys.com/topics/the-git-directory. 

[73] Teat, C., & Peltsverger, S. (2011, March). The security of cryptographic hashes. 

In Proceedings of the 49th Annual Southeast Regional Conference (pp. 103-108). ACM.  



 

115 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

26-03-2015 
2. REPORT TYPE  

Master’s Thesis  

3. DATES COVERED (From – To) 

August 2013 – March 2015 

TITLE AND SUBTITLE 

 
Git As An Encrypted Distributed Version Control System 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Shirey, Russell G., Captain, USAF 

 

5d.  PROJECT NUMBER 
 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

  Air Force Institute of Technology 

 Graduate School of Engineering and Management (AFIT/EN) 

 2950 Hobson Way, Building 640 

 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

AFIT-ENG-MS-15-M-022 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Intentionally left blank 

 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 
 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
     DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES   
This material is declared a work of the U.S. Government and is not subject to copyright 
protection in the United States. 

14. ABSTRACT  

This thesis develops and presents a secure Git implementation, Git Virtual Vault (GV2), for users of Git to 
work on sensitive projects with repositories located in unsecure distributed environments, such as in 
cloud computing. This scenario is common within the Department of Defense, as much work is of a 
sensitive nature. In order to provide security to Git, additional functionality is added for confidentiality and 
integrity protection. This thesis examines existing Git encryption implementations and baselines their 
performance compared to unencrypted Git. Real-world Git repositories are examined to characterize 
typical Git usage and determine if the existing Git encryption implementations are capable of efficient 
performance with regards to typical Git usage. This research shows that the existing Git encryption 
implementations do not provide efficient performance. This research develops an improved secure Git 
implementation, GV2, with transparent authenticated encryption. The fundamental contribution of this 
research is developing GV2 to perform Git garbage collection on plaintext data before encrypting the 
data. The result is a secure Git implementation that is transparent to the user with only a minor 
performance penalty, compared to unencrypted Git.   
15. SUBJECT TERMS 

        

16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 

 

UU 

18. 
NUMBER  
OF PAGES 
 

126 

19a.  NAME OF RESPONSIBLE PERSON 

Dr. Kenneth Hopkinson, AFIT/ENG 
a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 

U 

19b.  TELEPHONE NUMBER (Include area code) 

(937) 255-3636, ext 4579  

(Kenneth.hopkinson@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


